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ABSTRACT 

The objectives of the investigation described herein are t w o  fold: 

(1) t o  establish a method of designing three-dimensional (non-axisym- 

metric) thrust  nozzle contours f o r  maximum thrust with prescribed i n l e t  

conditions and constraint relations, and (2) t o  i l l u s t r a t e  the methodology 

f o r  the optimum design by considering t w o  examples. 

Design procedures for maxhizing the thrust  of axisymmetric rocket 

motor nozzles under various isoprametric conditions have been developed 

within the las t  decade and are  widely used currently. It is w e l l  known, 

however, tha t  rocket motor nozzles may be required t o  have flow geometries 

that cannot be adequately approximated by a simple two-dimensional or 

axisymmetric shape. 

designing optimum three-dimensional nozzles" 

homentropic flow (of a perfect gas) wfth given initial conditions, the 

following constraint relations m e  specified: (a)  the shape of the 

nozzle exit ,  ( b )  the variation of nozzle length with respect t o  the 

angular coordinate (r, jbp z coordinates), and (c>  a streamline which 

coincides with the z-axis i n  the f l o w  regfne. 

Hence, the need has been f e l t  for a method of 

Assuming an irrotational,  

The general problem of' optfnizhg the contour of a three-dimen- 

s ional  nozzle is f o m l a t e d  by postulating a three-dfnensional control 

surface which is constrained t o  pass through the  ex i t  contour of the 
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nozzle and intersect the core region (kernel) but is otherwise an 

arbi t rary three-dimensional surface. 

The standard ( r ,  6, z)-cylindrical coordinate system is used t o  

describe the problem. 

as integrals over the control surface. 

problem is obtained by applying the techniques of t h e  calculus of 

var ia t iors .  The variational integral is formed by summing the integral  

equation f o r  axial thrust, the integral equation f o r  t he  mass flow rate 

times a Lagrange multiplier, and the i r rotat ional i ty  condition times 

another Lagrange multiplier. 

geometry are included by substitution i n  the var ia t ional  integml.  From 

the  variational problem a se t  of four design equations which re la te  the 

flow variables on the control surface i s  derived. 

The axial thrust  and mass flow ra te  are written 

The solution t o  the  optimization 

The constraints on length and nozzle ex i t  

The design equations together with the boundary conditions i n  a 

particular problem, are sufficient t o  locate the control surface and 

determine the flow properties on it. 

I n  order t o  ensure that  a shock free flow f i e l d  exis ts  which w i l l  

produce the optimum flow on the  control surface and a lso  match the flow 

i n  the kernel, it is shown that the control surface is a characterist ic 

surface; that is, the control surface is shown t o  be oriented i n  a 

characterist ic direction and the compatibility equations f o r  a character- 

i s t i c  surface in three-dimensional flow are shown t o  apply on the control 

surface. 
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The methodology for  the application of the solution of the  optimi- 

zation problem is discussed w i t h  reference t o  two examples as follows: 

1. a nozzle in  which the i n i t i a l  and ambient conditions and the 

length of the nozzle are prescribed; the  shape of the nozzle 

at  the exi t  plane i s  required t o  be an e l l ipse  of given 

eccentricity but with variable area; and the  ex i t  contour 

is on a plane normal t c  a given axis; 

2. a nozzle in  which the i n i t i a l  and ambient conditions are 

prescribed ( in  particular tne throat  section is required t o  

be circular),  and the nozzle length and shape at  the ex i t  plane 

are the same as that obtained by a r b i t r a r i l y  truncating an 

optimized axisymmetric nozzle. 
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1. IFI%OMTCTION 

One of the interesting problems i n  f luid dynamics is the optimiza- 

t ion  of flow geometries under specified constraints. Such problems 

arise i n  the determination of the shapes of wing bodies and ships, of 

the moving parts of a turbo-mrrchine,and of the reaction nozzle of a 

rocket motor. In general, the problem of optimization should include 

the properties of the  medium of flow, both wi th  respect t o  the equation 

of state and the s t ress-s t ra in  relationships. Even when the  medium of 

flow i a  assumed t o  obey the perfect gas l a w  and a l l  viscous effects are 

neglected, the optimization of a f low,  three-dimensional i n  character, 

presents many interesting features. The research reported here pertains 

t o  the optimization of the geometry of a thrust nozzle ( i n  a rocket 

motor) under the assumption that the medium of flow is an inviscid 

mixture of gases obeying the pel'fect gas l a w .  

Several different types of constraints may be considered f o r  the 

thrust nozzle, such as (a) geometrical constraints, (b) weight-based 

constraints, or (c) constraints based upon the loss of momentum or  energy 

i n  the flow. 

the establishment of a method for  designing three-dimensional (non- 

The objective of the investigation* described herein is 

axisymmetric ) thrust  nozzle contours f o r  maximum thrust  w i t h  prescribed 

in l e t  conditions and specified constraints on the overall  length and 

ex i t  geometry. 
* Thompson, H. D., "Design of Optimized Three-Dimensional Thrust Nozzle 

Contours," Ph.D. Thesis, Purdue University, June 1965. 
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Furthermore, it may be pointed out a t  the outset that the procedure 

fo r  a complete design w l l 1  involve the determination of the flow geometry 

i n  (a) the subsonic region, (b) the transonic region, and (c) the super- 

sonic region. 

the  opthizat ion of the flow geometry in t h e  supersonic region of the 

The research under report is concerned exclusively with 

thrust  nozzle e 

* * * 
The thrust  of e propulsion device operating with chemical propel- 

l an ts  is developed primarily by imparting momentum t o  the  products of 

combustion by discharging them through the nozzle. 

accelerated from low subsonic velocit ies i n  the  converging ( i n i t i a l )  

portion of the nozzle; they pass from subsonic t o  supersonic velocit lee 

i n  the minimum area section (throat)*, and are further accelerated In the 

The gases are 

diverging portion of the nozzle t o  achieve the required supersonic 

velocity a t  the ex i t .  

or  the development of a method of deslgn requires the determlnatlon of 

An analysis of the performance of a thrust  nozzle 

the f l o w  f i e l d  i n  the  nozzle and demands a separate method of a r l y r i S  

f o r  each of t h e  three sections of the nozzle, aamely the subsonic con- 

verging section, the transonic (throat)  section, and the superoonic 

diverging sect ion 

The t o t a l  thrust  achieved by the nozzle depsnde upon the  rate of 

mass f l o w  through the nozzle, the velocity ( i n  the axial  direction) o f  
* The nozzle throat, as defined herein, is t he  intersection of  t h r e  

contour with the plane which is  normal t o  the  general direction of f l o w  
and at the point of minimum cross rect ionsl  area of the  noezle. The 
plane through the nozzle throat 16 used 86 a fixed reference for the 
coordinate system and hence f o r  mereuring the  nozzle length, 
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the combustion gases at  the nozzle exit ,  and the pressure difference 

between the exhaust f l o w  and the ambient conditions. 

impllse of a nozzle is the t o t a l  axial thrust divided by the weight 

flow ra te  of propellant and is a measure of the nozzle efficiency. 

The specific 

One of the obdectives of a nozzle designer is t o  obtain the maximum 

thrust  from a nozzle under a given set  of operating conditions. 

general, th i s  is accomplished by increasing the exhaust velocity i n  the 

desired direction of thrust  and by decreasing the difference in pressure 

between the combustion gases at the nozzle ex i t  and the Bmbient value. 

I n  

The mass flow rate through the nozzle is determined by the throat 

area and the operating conditions in the combustion chamber. 

given s e t  of operating conditions in the combustion chamber and a fixed 

throat area, the flow geometry o r  the design of the subsonic portion of 

a nozzle contour may influence only the  flow up t o  the throat section 

and w i l l  have no effect  on the flow f i e l d  beyond the throat. 

reason the performance of a thrust  nozzle maybe considered t o  depend 

almost ent i re ly  on the design of the supersonic diverging portion of the 

nozzle contour. 

For a 

For t h i s  

A complete analysis of the flow in a nozzle sRou3.d account f o r  

(a )  the state of the medium of flow, (b) the s t ress-s t ra in  relations 

governing the f l o w ,  and (c )  the mass, momentum, and energy t ransfer  

processes associated with the flow. 

from introducirg the effects  of such parameters may prove t o  be of great 

importance i n  practice, i n i t i a l  comparisons of gross performance 

parameters can be obtained by assuming an adiabatic expansion of an 

While the changes i n  performance 
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inviscid, i d e a l  gas with a constant r a t i o  of specific heats; that is, it 

is both thermally and calor ical ly  perf'ect. The value of the thrust  

obtained from any of the flow geometries considered under such approxi- 

mations may be vast ly  different from t h e  actual value obtained i n  practice. 

For a fixed set of operating conditions ( i n i t i a l  gas conditions and 

the anibient conditions), the best  performance in terms of thrust  In a 

given direction is obtained from a nozzle which isentropically expands 

the (coxibustion) gases t o  a uniform (supersonic) speed at the ex i t  w e  

of the nozzle under the conditions that (a) the en t i r e  stream is oriented 

at the ex i t  plane in the desired direction of the  thrust ,  and (b) the  

pressure at the  ex i t  plane is no dwferent from the ambient pressure. 

Such a nozzle contuur is referred t o  as a perfect nozzle. When the 

en t i r e  flow is axisymmetric, it i e  c lear  that a perfect nozzle with 

the  dorementioned constraints provides the maximum thrust. 

Two-dimensional perfect nozzles are widely used in wind tunnel 

construction. However, perfect nozzles tend t o  become very long; con- 

aequently, they are not employed as th rus t  nozzles because of their  

excessive length and weight. 

On the other hand, in a pract ical  rocket motor several other 

constraints may be imposed while s t i l l  requiring the msxFmum value of 

th rus t  t o  be generated in a part icular  direction. Then the conditions 

specified for determining the flow geometry of the nozzle become 

( a )  the initial conditions of flow, say at the throat section, (b) the  

ambient conditions, and (c )  the  other conditions constraining the flow. 
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Those other constraining condi2ions may be related t o  ( i )  the geometry of 

the flow, such as the lengtkrw of the nozzle, the  shape of" the  throat, 

and/or the shape of theecit plane, ( i f )  the surface area of t he  flow 

geometry-governing the heat transfer (or momentum loss  ), and/or 

( i i i )  some other conditions related t o  an aspect of the  fabrication or 

overall-system design objectives. In shod ,  a number of a l ternat ive con- 

di t ions may be imposed as conotrafnts in the design of a thrust nozzle; 

i n  each case, the objective of the  designer may remain the  same, namely 

the  determination of the nozzle contour which w i l l  yield the best value 

of thrust and sa t i s fy  all of the  conatraint conditions imposed. The 

problem of optimization arises precisely fa that situation; f o r  a given 

set of initial and constraining conditions, the f l o w  geometry which 

yields the maximum value of one performance prameter (for example, the 

th rus t )  is t o  be determined. Mathematically, t he  determfnrttion of such 

a flow geometry requires showbg t h a t  such a geometry ex is t s  and is  

unique f o r  a given set of' i n i t i a l  and constraint conditions. 

The application of optimization tecbniques t o  the'desfgn of rocket 

motor nozzle c o n t m s  t o  obtain the maximurn thrust under various con- 

straining conditions has been the subject of considerable interest  

over the past decade 
* The length of the nozzle is the axial  distance between the fixed reference 

plane at the nozzle throat and 8 point on the ex i t  boundary of the  nozzle; 
therefore unless the ex i t  boundary of the nozzle is on a plane parallel 
t o  the fixed reference plane (a t  the throa t )  the length will be different 
at various points on the ex i t  contour. For the general three-dimensional 
nozzle contour the length  may thus be a function of" the angular coordinate, 
namely 6- 

A l l  of those analyses pertain t o  axisyrmnetric 1-W 

Superscripted numerals refer  t o  references l is ted fn the Bibliography. 
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flow geometries, and the methods developed are widely used currently fo r  

the practical  design of thrust  nozzles. 

a m e n t ,  however, t ha t  thrust  nozzles maybe required t o  have flow 

geometries that cannot be approximated adequately by a simple two- 
9 dimensional or axisymmetric shape 

It is becoming increasingly 

1.1 Survey of Literature 

In the of the optimization problem, the operating 

conditions in the combustion chamber, the subsonic and the traneonic 

parts of the nozzle contour and the mass flow rate have been considered 

t o  be known and t o  remain fixed. One is therefore concerned with the 

deterhination of the supersonic portion of the contour that w i l l  msximize 

the thrust  and sa t i s fy  the constraints imposed. 

s t r a in t  i s  ordinari ly  related t o  the length of the nozzle. 

The most common con- 

The original formla t ion  of the problem is due t o  Guderley and 
1 IIsntsch 

of var ia t ions.  

best explained by referring t o  the  axisymmetric nozzle contour illustrated 

in Fig. 1.1. 

arc T B B' is considered t o  be given. 

of the nozzle, T B C D 0, denoted as the kernel, is then uniquely 

determined by the fixed initial conditions in the throat region and the 

prescribed in i t i a l  expansion contour. 

then consists in postulating and introducing a control surface, C E, i n  

order t o  determine the ax ia l  momentum and the  other quantit ies of in te res t .  

and u t i l i ze s  the optimization methods based upon the calculus 

The essent ia l  elements of the problem formulation are 

In a d d i t i m  t o  the subsonic contour A T, an i n i t i a l  expansion 

The f l o w  f i e l d  in the core region 

The esBence of the formulation 
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The p r t i c d a r  control surface which, along with the kernel, constitutes 

the  final. solution is that control surface across which total. ax ia l  

momentum is the maxlmum,subject t o  t h e  constraints that  are imposed. 

Guderley and Hantsch imposed the constraints that 1 

(a) the 1118.88 flow rate through the nozzle remains a given and 

constant value, 

(b) the length of the nozzle may not vary but remains a t  a given 

value, and 

(c) the control surface is a characterist ic surPace.* 

Condition (c) in rea l i t y  imposes two constraints on the control surface; 

namely,that it be oriented in the characterist ic direction and that the 

compatibility equations f o r  a characterist ic be satisfied on the control 

surface. The optimization problem is formulated using Lagrange multi- 

pliers t o  impose the constraint conditions. By employing the calculus 

of variations, a set of design equations is obtained from which the 

control surface my be located and the  flow properties determined on it. 

It then only remains t o  f ind the  flow between the kernel and t h e  control 

surface. The details of the procedure required f o r  laying aut that 

portion of the flow are given in Ref. 5. 
2 Sometime later Rao discovered that it is not necessary t o  impose 

specif ics l ly  the constraint that t he  control surf8ce be a characterist ic 
* Guderley and HantschA imposed the condition that the control skrface be 

a characterist ic surface t o  ensure that  the derived flow variables on 
the  control surface could be matched t o  the flow in the kernel. Although 
t h i s  appears t o  be the most plausible method of formulating the problem 
it has proven t o  be less desirable than the formulatian due t o  Rao20 
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surf'ace. 

arbitrary,  the result ing d e s i p  equations could, i n  fac t ,  be proved 

t o  require the control surface t o  be a characterist ic sueace .  

it has been established that once a control surface is postdated it 

will be uniquely determined as a characterist ic surface when the con- 

straints are  appropriately chosen. The choice of the constraining 

relations is c r i t i c a l  i n  the fsz-mulation and solution of the  problem. 
1 2 Both Guderley and Hantsch and Rao pose the problem of obtaining 

the flow geometry which w i l l  produce the maximum value of momentum in 

the desired direction of tlarust (axial direction f o r  an axisymmetric 

nozzle) under the constrafnts that (a) the en t i re  flow geometry is 

axisymmetric, (b) the ax ia l  length of the region of flow over which the 

acceleration OCCWB is fixed, and (c) the i n i t i a l  conditions, including 

the mass flux, are fFxedo 

different  formla t ion  of the  problem and as a resul t  they obtain dif-  

fe ren t  forms of the solution whfch are not clear ly  demonstrated t o  be 

equivalent t o  each other. 

Instead, by allowfig the control so11Tface direction t o  be 

Thus, 

However, each of the  authors presents a 

An excellent comparison of' the two methods of posing the same 

3 problem has been presented by Guderley who also derived the axisym- 

metric design equations f o r  the non-homenmtropfc flow case (i .eo,  the 

case of constant t o t a l  enthalpy and constant entropy on a streamline 

but with allowable variations in entropy between streamlines ) . 
2 It may be pointed aut that the design equations derived by Rao 

are considerately simpler when compred t o  those derived by Guderley 

and Iiantsch 

nozzle design has resulted i n  the wide pract ical  use of the  method. 

1 The re la t ive  simplicity of b o ' s  solution f o r  the optimized 
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A procedure for optimizing the thrust of axisymmetric nozzles 

subject to other geometric constraint conditions, such as a prescribed 

surface area, has been developed by Guderley and Armitage e 

cedure is again based on the optimization methods utilizing the calculus 

of variations but the problem is formulated in a different manner so as 

to make the nozzle boundary the ccntrol surface. 

6 The pro- 

A more extensive discussion on the methods of design of axisym- 

metric nozzles is presented in Ref 5 .  

1.2 Three-Dimensional Nozzle Flow 

A general three-dimensional rocket motor nozzle is completely 

determined when the following data are prescribed: 

initial conditions, 

total thrust, 

nozzle shape in the transverse plane, 

variation of the shape in the transverse plane along the 

meridional axis, 

exit flow conditions, and 

the shape of at least one streamline. 

data have to be given before a nozzle contour can be determined 

by analytical means . 
For the purposes of analysis of the performance of' a rocket motor 

nozzle, the following data are required: 

(i) initial conditions and 

(ii) complete nozzle contour. 



1% 

In any case9 it is first necessary t o  set up the governing equations 

f o r  the  state and the motion of the gas 

The procedure fo r  the  computation of a the%-dbens iona l  supersonic 

flow u t i l i z ing  the method sf" characterfstics is s t U  under development. 

Several a l ternat ive procedures and their re la t ive merits are discussed 

in Ref. 10, wfierein two of the  five recommended methods are presented 

i n  some da$ail. 

The procedure for the opbfrmun des- of a three-dfnensfonal thrust 

nozzle contour can be conefdered as a generalization of the method 

1 2 developed by Guderley and Bsstsch and by Rao for the optimum design of 

axisymmetric t'hmt nozzles 

nozzle flows is considem'ly cmplicated by the followfag features: 

However the problem of three-dimensional 

1. 

2. 

a hornentropic* flow fe not necessarfly an irrotsrtfond flow; 

the control surface +hi& is postulated f o r  the purpose of 

determining the flow -parameters is required t o  match the flow 

properties both em the boundary of the kernel. (which it fiter- 

sects)  and on the ex i t  contoup of the  nozzle (with which it 

coincides); 

3. no streamlhe m y  be present i n  the flow regime which can be 

described s h @ y  witb reference t o  a chosen coordinate system; 

no planes of symmetry may 'be present in the  flow regime and there 

may be no axfs of ssymmetry a t  the FetPlrorttu' o~.%h@ "exit" 

boundary; and 

5. the thrust may be csmpPlted wPth respect t o  an azib%tmwy directiono 
* The term hornentropic refera t o  a f l o w  with constant specific entropy 

thraughaut the phy~%cal  domain of flow. See R e f o  PI9 page 3. 
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I3 one considers an axisymmetric nozzle and examines the f ive  

aforementioned complicating features, it is obvious that they correspond 

t o  the following features pertaining t o  the axisymmetric case: 

a homentropic flow is necessarily irrotational;  

the control surface is axlsymmetric thus requiring that the 

e x i t  plane of the nozzle as well  as the plane of intersection 

of the control surface with the kernel be planes normal t o  the  

axis of the nozzle. F’urther, the velocity and flow properties 

on the  control surface as w e l l  as the length of the nozzle are 

independent of the  angular coordinate; 

the axis of the nozzle is  a streamline; 

not only are there planes of symmetry, but there is axial 

symmetry by definit ion throughout the flow regime; and 

while the thrust may be calculated with respect t o  an arbitrary 

direction, the axial direction is generally the natural  choice. 

It is clear, therefore, that both i n  the formulation of the problem and 

i n  the develomnt  of a methodology f o r  the application of the solution 

the three-dimensional nozzle Wirl present en t i re ly  new features. 

theless, the general principles involved are the  same as those employed 

f o r  axisymmetric flows, 

1. 

2e 

3. 

4. 

5 .  

N e v e r -  

1.3 The Olrtimization Prob$em 

The formulation of the optimum design problem consists of con- 

sidering the f l o w  across a three-dimensional control surface which is 

constrained t o  pass through the nozzle exit contour and t o  intersect 

the three-dimensional kernel, but otherwise, it is an arb i t ra ry  three- 
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dhensional  surface. As In the design of optimized misymmetric nozzle 

contours, the emphasis fs on the supersonic portion of the contoetp. 

Consequently, the operating conditions in %he combustion chamber as w e l l  

as the contours of the subsonic9 transonic, and i n i t i a l  expansion porkions 

of the nozzle w a l l  are determined by deeiga c r i t e r i a  other than thrust  

optimization and are considered t o  be known f o r  purposes of thrust  

maximization. In addition, the flow f ie ld  in the  kernel (which is 

uniquely determined by thoee i n i t i a l  conditions and the preecribed por- 

t i o n  of the nozzle contour) is camidaxed t o  be known fn the  optimiza- 

t ion problem 

The formulation of the problem ie rest r ic ted by the following 

assumptions : 

1. the  flow is hornentropic and %pm%ationa% thrspleghmt the  iPow 

regime; 

the flow reghe includes one styaight s t r e d b e  which coincides 

with the coordinate direction representing the general directfon 

of flow; and 

2 0  

3. t h e  desired directisst cesf maxirmuntP1l”22st is the direction repre- 

sented by the s t ra ight  stremlbe mentioned -under 2 in the 

foregoing. 

The constraints imposed are the folXowfnrg: 

1. the i n i t i a l  conditions a t  %he t h o a t  section are given in a 

region where at every point the flow is supersonic; so 8150 

are the ambient conditions given; 

the  mass flux thrcmgh the control surface is given and may not 

be varied; 

2. 
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3. t h e  length of the  nozzle is given as a specll"fc function of 

the  angular coordinate and m y  not be varied; and 

4. t he  control surface is a continuous smooth surface. 

It may be stated that the three basic res t r ic t ions  and the four 

constraint relations are the only  l imitations under which the optimi- 

zation problem is formulated. 

The flow on the control s w a c e  is described in term of f ive  

dependent variables V, eo 

describe the velocity vector, V, and the  variables a and f 

direction of the uni t  normal t o  the control surface. 

and mass flow ra te  are expressed in terms of V, 0, 

integral  equations over the control surface. 

, a and .* The variables, V, e, and L)/ 
define the 

The axial th rus t  

a! and (3 as 

The i r ro ta t iona l i ty  

condition on the control surface is derived in terms of a partial 

di f fe ren t ia l  equation i n v o l w  derivatives of V, e, and The 

condition f o r  maxFmUm thrust ,  with a fixed mass flow and with ir- 

rotational flow, then requires tha t  the var ia t ional  integral ,  I, be 

stationary where the variational integral  is formed using Lagr8nge 

multipliers t o  form a lfneap combination of the ax ia l  thrust, mass flow 

rate, and i r ro ta t iona l i ty  constraint. The conditions fnposed on the  

length and ex i t  shape of" the nozzle contour are imposed by substi tuting 

in to  the variational integral. 

In  order t o  solve the problem, additional re la t ions are  required in 

in the form of boundary conditions. Such boundary conditions w i l l  

pertain t o  some or all of' the following: 

* All synibols are defined later in Chapter 2 and an alphabetical list- 
of 8J-l syllibols used with definit ion for each is included as Appendix A. 
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I 

b 

1. the functional relation between the  length of the nozzle and 

the angular coordinate; 

the shape of the physical boundaries at the throat section and 

a t  the ex i t  plane of the nozzle; 

2. 

3. the existence o f  planes of" symmetry in the  f l o w  regime; and 

4. the  functional relation governing the variation of the velocity 

with the anguhar coordinate at the ex i t  plane of the nozzle. 

1.4 The Outline of the "hesis 

As mentioned earlier, the de t emha t i sn  of the optimized contour of 

a thrust  nozzle involves essent ia l ly  the supersornfc portion of the nozzle. 

I n  the  absence of viscous effect8 and under the  assumption tha t  the f l o w  

medium is a thermally and calorically perfect gas the problem of optimi- 

zation becomes the determination of the f l o w  eontours for obtaining the 

maximum value of momentum in a par t icu lar  direction, within a certain 

length of the flow regime, a d  with given i n i t i a l  and ambient conditions. 

The coordinate system employed f o r  the formulation o f  the problem 

and other significant features related t o  the  flow are presented in 

Chapter 2* 

Chapter 3 is  demted t o  the  fomd.a.tion of the problem under the 

res t r ic t ions  of homenLrspie, %rrotatisnal flow in which me stream- 

l i n e  coincides wPth the coordinate representing the general direction 

of flow and the length of the nozzle is given as a function of the 

angular coordinatee The solution of the  problem is based upon the 



16 

optimization procedures of the calculus of variations and results i n  a 

set of seven design equations which apply on a postulated control sur- 

face. 

determined surface i s  obtained by showing that the control surface 

complies w i t h  all of the conditions required on a characterist ic surface. 

The seven design equations can be reduced t o  a set of four partial 

The proof that such a control surface is a physical and uniquely- 

d i f fe ren t ia l  equations. 

ditions. 

fonns and in  relation t o  dif'ferent geometric and flow parameters. 

In  order t o  solve them one needs boundary con- 

Such boundary conditions m y  be obtained in many different 

In  Chapter 4, a se t  of boundary conditions is discussed which are 

related t o  (a)  the initial flow conditions at the throat section of the 

nozzle, (b) the length of the nozzle as a function of the  angular co- 

ordinate ( in  the particular example cited independent of the angular 

coordinate) and, (c) t he  minimum number of conditions f o r  defining the 

variation of velocity on a prescribed shape at  the ex i t  plane of the  

nozzle. It should be emphasized that Ff the length of the nozzle is 

prescribed, the only boundary conditions tha t  may be prescribed in 

relat ion t o  the  geometry of the nozzle are the shams of the  nozzle at  

the throat section and at  the ex i t  plane of the nozzle. 

obtains the location and shape of the control surface which, along 

with the kernel of the flow, determinee the en t i r e  flow f i e l d .  

One then 

The methodology f o r  the  application of t he  solution of the cgtimiza- 

t i on  problem is discussed in Chapter 5 w i t h  reference t o  t w o  examples as 

follows : 



1. a nozzle in which the i n i t i a l  and ambient conditions and the 

length of t he  nozzle are prescribed; t h e  shape of the  nozzle 

a t  t he  ex i t  plane is  required t o  be an ell ipse of given ec- 

centr ic i ty  but with variable area; and the  ex i t  contour i s  on 

a plane normal t o  a given axis; 

2. a nozzle in which the  i n i t i a l  and ambient conditions are 

prescribed; i n  particular the throat section is  required t o  

be circular; and the nozzle length and shape a t  the  ex i t  plane 

are  the same as t h a t  obtained by a rb i t r a r i l y  truncating an 

optimized axisymmetric nozzle. 

According t o  the  theory there are t e n  boundary conditions t o  be 

satisfied considering both the inner boundary a t  the  intersection of 

t he  control surface w i t h  the  kernel and the outer boundary a t  t he  

nozzle exit ;  however, the  manner i n  which the  boundary conditions are 

prescribed and the f a c t  t ha t  each boundary is  a curve on which the 

problem variables may not be constant makes it extremely d i f f i cu l t  t o  

ascer ta in  just  what consti tutes one boundary condition. It is therefore 

necessary t o  r e ly  on t h e  formalism of the  theory tz provide the needed 

number of boundary conditions. The number of i t e ra t ion  procedures f o r  

solving a problem are inseparably connected t o  the  manner i n  which the 

boundary conditions are prescribed and the number of boundary equations 

which are known OE oach boundary. 

cussed b r i e f ly  i n  Chapter 5 .  

The procedure f o r  i t e ra t ion  i n  dis- 

The determination of the f i n a l  methodology which may prove suitable 

under given conditions is an open problem, both i n  regard t o  finding a 



computational procedure as well as i n  regard t o  obtaining the desired 

degree of convergence of numerical solutions; nevertheless, it may be 

concluded tha t  the existence of an optimized solution f o r  a three- 

dimensional internal flow under appropriate constraints has been 

demonstrated and t h e  broad outlines of the methodology required f o r  

the application of the solution have been established. 



The optimum design of a thrust  nozzle has usuallybeen divided into 

three separate, though admittedly not independent, problems of design 

related t o  

1. the subsonic converging contour, 

2. the transonic contour near the throat, and 

3. the supersonic diverging contour. 

In the region employed f o r  mtching the  transonic contour with the 

supersonic contour of the nozzle, t h e  initial expension contour a lso  

needs to 'be determined. The i n i t i a l  state of the gas and the  wall 

contour f o r  the subsonic, transonic, and initial expansion regions of 

the nozzle are t o  be determined on the basis of design c r i t e r i a  other 

than thrust optimization (maximization), a d ,  consequently, w i l l  be 

treated as known qpaatities with m s p c t  t o  the thrust maximization 

problem. mus, the problem af optimum design of' a nozzle to be discussed 

in this research report c m c e m  only the determination of the  super- 

sonic portion of the nozzle eontour beyond the i n i t i a l  expansion contour. 

Figure 2.1 is a schematic representation of a general three-dimen- 

sional nozzle contour. The zone of influence of the initial expansion 

contour of the nozzle is  denoted as the kernel and is the portion of the 

supersonic flow f o r  which the flow variables are completely determined 

by the  initial conditions and the prescribed subsonic, transonic and 
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i n i t i a l  expansion contour. It is  assumed that the  flaw variables ia the 

kernel are determinable by applyiq the tbree-dimensiond. method of' 

chamcteristicsl0 and that the f l o w  variabks an the outer Prurfaoe of 

the kernel, which are neceseary f o r  further analysis, are available. 

Consequently, the i n i t i a l  flow conditions must be specified as part of 

the problem and thus wlll ac t  as constraints on the  mathematical. 

optimieatian problemo 

In th i s  report the only initial conditions which w i l l  be considered 

arc the conditions of inviscid i r rotat ional  flow of a perfect gas with 

constant t o t a l  enthalpyo Thus t h e  constraints imposed by the i n i t i a l  

conditions are constant entropy throughout the flow, constant t o t a l  

enthalpy and the l r ro ta t iona l i ty  condition f o r  the  vor t ic i ty  component 

along a streamline. These constraints are discussed in  more detail in 

Section 202.3. 

I n  order t o  formulate the optimization pmblem mathemetically, a 

control surface, a lso  illustrated i n  Fig .  2.19 is introduced. The 

control surface is constrained t o  pass through the nozzle ex i t  contour 

and t o  intersect the kernel but is otherwise an arbitrary, three- 

d i m e n s i d  surf'ace. 

as integral. equations Over the control surfaceo 

steps in the solution of the mathematical problem is the establishment 

of the uniquely determinable Character of the control surface. That is  

done by showing that the control surface is a characterist ic eurface. 

For convenience, therefore, a summary of the relationships governing 

character is t ic  surfaces in three-dimensional flow is included in  

Section 2.1.3 as part of the discussion of nomenclature. 

The axial. momentum and mass flow rate are  expressed 

&e of the essent ia l  
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In Section 2.2 the mathematical relationships pertaining t o  the 

control surface a re  deduced. The transformation relations which are 

employedto transform from the control surface t o  t h e  two-dimensional 

( r ,  @)-plane and the reverse transformations are  also derived therein. 

I n  Section 2.3 the variational integral  is formed and the variational 

relations a re  derived. Section 2.4 summarizes the overall mathematical 

problem. 

2.1 Nomenclature 

For convenience the symbols employed are listed alphabetically i n  

A l l  symbols are defined when first  introduced but wi l l  be 

Standard notation has been employed as 

Appendix A .  

without definition thereaf'ter. 

far as possible. 

2.1.1 Coordinate System 

The standard (r, 6, 2)-cylindrical coordinate system i l lus t ra ted  

in Fig. 2.2, is used throughout as the spatial reference. The z-axis 

is oriented along the s t ra ight  nozzle axis, the r-coordinate is 

measured radially from the z-axis t o  the r-&xis. 

The velocity vector, 7, at any point i s  defined in terms of i ts  

magnitude, V, and the spherical angles 8 and 

F i g .  2.3. The angle 8 is measured counterclockwise 

The angle is  measured i n  the ( r ,  @)-plane, counterclockwise from 

r t o  the projection of V on the (r, @)-plane. The direction cosines 

of the velocity vector with respect t o  the  ( r ,  @, 2)-coordinates are 

as i l lustrated in 

from z t o  V. 
-A 

A 
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I (f 9 2) CYLINDRICAL COORDINATE SYSTEM 

FIGURE 2.3 
COMPONENTS OF THE VELOCITY VECTOR, 3 
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vr = sin e COS 

va = sin e siny (2.1) 

= COS e vz 
The control surface is  defined in terms of the unit  normal t o  the 

2 surface, n. 

as i l lustrated i n  Fig. 2.4. The angle e 
from the z-axis t o  n, and the angle a is measured in  the (r, #)-plane, 

counterclockwise from r t o  the  projection of $ on the  (r, #)-plane. 

Thus, the  direction cosines of -$ are 

The direction of % is  determined by the angles a andg 

is measured counterclockwise 
3 

n = - s i n e  cos a 

n6 = - sin? sin a 
r 

nZ = cos e 
201.2 Pressure, Density, Ehtropy and Vorticity Relationships 

The problem is limited t o  the inviscid, irrotational,  homentropic 

flow of a perfect gas. U s i n g  the  perfect gas relationship, viz. 

P = p R T  (2.3) 

the equation of state f o r  a homentropic flow is 

= constant P - = -  
-if 

PT PO 

where P is t h e  pressure, T is the temperature, p is the  density, R is 

the gas constant, is the  specific heat ra t io ,  and the  subscript o 

, denotes i n i t i a l  ( to ta l )  conditions. 
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The sound speed, c)  at  any point is defined by t h e  re la t ion 

c -  2 - ($) 
@ S  

where the subscript s denotes a constant entropy process. 

eqns, (2.4) and (2.5) 

Thus, from 

B e r n o u l l i ' s  equation can be written 

2 
0 

C L+v2 = - r -  = constant 2 r - l  2 

Consequently, the pressure, density, and sound speed are functions of V 

and the  i n i t i a l  conditions so that the following d i f fe ren t ia l  relation- 

ships are valid: 

dP = - pV d V  

dp = - 5 d V  
C 

(2.10) r -1  v dc = - (7) dV 

For future we, the Mach angle, ps is  defined by the equation 

where M i s  the Mach number. 

terms of the differential dV RS 

Hence the d i f f e ren t i a l  dp can be written in  

(2.12) 

I n  the formulation of the optimization problem the  h e n t r o p i c  flow 

Constraint is imposed by eliminating the pressure and density derivatives 



by substitution from eqns. (2.8) and (2.9). I n  a general three-dhen- 

sional flow, however, a constant entropy does not assure an i r rotat ional  

f lo#.  That  is, the entropy gradients in a f low a re  related only t o  the 

components of vort ic i ty  which are  normal t o  the streamline, and, there- 

fore, a vort ic i ty  vector can exis t  along a streamline even i n  a homen- 
12 tropic flow. 

A 

The vortex vector, k) , is defined as the cur l  of the  velocity 

vector. Hence, 
A 2 

= v x V = C U r l T  
A 

I n  terms of the cylindrical  coordinates r, 6, and z the components of W 

are  

(2.14) 

(2.15) 

(2.16) 

For i r ro ta t iona l  f l o w  a l l  three components of the  vor t ic i ty  vector must 

be identically zero. 

2.103 Three-Dimensional Characteristic Relationship 

One of the essent ia l  steps in  the soPution of the mathematical 

problem is the  establishment of the uniquely determinable character of 

the  control surface. The proof of such uniqueness rests here on showing 

tha t  the control surface is  a characteristic surface. Accordingly, the 

terminology and equations governing characterist ic surfacesax summarized 

here f o r  future reference. 
* The vor t i c i ty  vector is  related t o  the entropy gradient by Crocco's 

equation whiLh fLr a steady, three-5imensional f l o w  with constant t o t a l  
enthalpy is V x U = - T g7 s o  GI i s  zero Lhen V s must beJero, 
but if' v s is zero then either &) i s  zero or  V is parallel t o  W 
two-dimensional or  axisymmetric f lows  the  lat ter possibil i ty,  namely 
pa ra l l e l  t o  w' , does not exis t .  

In 
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The governing partial dtt'f erent i a l  equations f o r  supersonic flow are 

of hyperbolic type. 

possess unique directions called characterist ic directions. 

of hyperbolic partial d i f fe ren t ia l  equations u t i l i z ing  the special  pro- 

perties of the  equations along characterist ic directions is  commonly 

referred t o  as the method of characterist ics.  

It is a feature of hyperbolic equations tha t  they 

The solution 

The application of the method of characterist ics t o  three-dimeneional 

flow has received considerable a t tent ion over the past decade. 

concepts and the  fundamental equations required f o r  applying the method 

of characteristics t o  compute the three-dimensional flow in nozzlee are 

given in de ta i l  i n  R e f .  10. No attempt w i l l  be made here t o  duplicate 

that work, but it may be pointed out that  the application of the tach- 

niques of the method of characterletice t o  three-dbneneional suproonic 

flow fields is an essent ia l  part of the overall design problem. 

able care is required in the choice of the technique, particularly from 

the point of view of convergence and non-occurrence of  singularlt lee.  

The baaic 

Conelder- 

Terminology: a c h  point Q in a supersonic flow field i e  Creowhted 

with a Mach conoid or  characterist ic conoid a8 i l lus t ra ted  in Fig. 2.5. 

The right circular cone formed by the tsngente t o  the Mach conoid at Q 

is the  characterietic cone or Mach cone. 

cone make the  angle p with the velocity vector when p I s  the *oh -0 

defined by eqn. (2.11). 

The rays of t he  characterletlo 

Aeeociated with each polnt on a non-charaaterlrtlc line ruch am 

T T' (iUu8tratecl In Fig .  2.6) l e  a characterl6tlc  ono old^ Tha two 

surfaces tangent t o  the chsracteri8tic conoids and containing the  line 

I 
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T T' are characteristic surfaces. The intersection of a characteristic 

conoid and a characteristic surface is a bicharacteristic curve, The 

relationships between bicharacteristics, characteristic conoids, 

characteristic cones, and characteristic surfsces are illustrated In 

F i g .  2.6. 

Characteristic Surfaces: I n  a three-dimensZonal supersonic flow 

the characteristic surfaces are of fhdamental impsrtance since the 

governing equations for the three-dimensional flow reduce to two equa- 

ttcm an each characteristic surfaceo For a surface to be a character- 

istic surface it is necessary and suffieient that 

(a) the surf'ace be oriented in a characteristic direction, and 

(b) the so-called comptibility equaticms apply on the surf'ace. 

Characteristic Directions: A surface is oriented in a charactez- 

istic direction if' it is tangent to the characteristic conoids 

associated with each point on the surface. Thus, if' at every point on 

a surface the velocity vectw, ?s, and the unit normal to the 8urface9 n, 

satisfy the relation 

--L 

the surface is oriented in a characteristic directionb 

Compatibility Esuatians: The compatibility equations associated 

with the method of characteristics for suprsonic flew are the governing 

equations (Le., the equations of' conservation of mass, momentum and 

energy) for the fluw transformed to a coordinate system on a character 



32 

Ist ic surface. The compatibility equations (for several coordhate 

syetems) are derived in Ref . 10. 
Figure 2.7 llJ.ustretes the coordiaate relationships at a point h 

a supersonic, three-dimensional flow. 

bicharacterist ic.  

The direction L is slang a 

The direction N I s  normal t o  L and fn the tangent 

plane t o  the  characterist ic cone st the point Q. 

(L, N)-coordinates lie on the c h a r a c t e r i ~ t l c  muface. 

Consequently, the 

Ths direction 
2 

of the  vclocity vector, V, is dcfincd by t h e  angles e and ly which 

urc 1;:ecsured in accordance wi th  t he  previously established convention 

(see Pig .  2.3). 

and the  (7, L)-plose. 

The angle 6 is the  angle between t h e  (7, z)-p;Lane 

Denote the uni t  vectors in t h e  L and N dimzctims b y z a n d  
J 

respectively, and l e t  the components of L and 

dlmctlone be denoted by Lr, L , Lz, Nr, N 

i n  t h e  r, @ and z 

and NZ. These cmponents b 16 
are related t o  the components of the u n i t  normal t o  t h e  c h r a c t e r i s t l c  

A 2 A A  
curface, n, and t o y  by t he  equations t' N = 0; n N - 0; 

(V L)/V a cos p. Solvw these vector equations for N rI N p  NZ' 

Lr# 4, and Lz yields the 

nz Vd - 3 vz 
cos p 

Nr = f 

"r vz - I1Z vr Nfi = f 
cos i.r 

re la  t ionsh ips 

(2.18) 

(2.19) 
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F I G U R E  2.7 

C O O R D I N A T E  S Y S T E M  F O R  

T H R E E  D I M E N S I O N A L  C H A R A C T E R I S T I C S  
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nr sin ir - Vr 

nB sin P * VB 

nZ sin p - Vz 

L = *  (2.21) 

cos p (2.22) 

L = f  (2.23) 

r cos Cr. 

La = f 

Z cos p 
Now one caa determine the angle 6 from the vector relationships 

cos 6 = 
A 

(2.24) N (Cx?)  
1;x.q 

ITXTI 

and 2 - a  

(2.25) 
N x ( z  x V) sin 6 = 

where f denotes the uni t  vector along the z-axis. Evaluating eqns. (2.24) 

and (2.25) gives - sine sin (ly- a) 
cos CI S U B = +  

and 

(2.27 1 COS@ e + sinQ COB e COS (Cy- a) 
cos p cos 6 = f 

It may then be sh~wn’~’’~ that the compatibility equations f o r  

homentropic i r rotat ional  flow are 

- sin p tan p COS 6 sin e ( a(\Y+) - sin 6 (3) 1 = 0 (2.28) 
L a L  

and 

where subscripted parentheses o r  brackets enclosing a derivative denote 

differentiation on the characterist ic surface in the direction which 

holds the subscripted variable consCant 
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2.2 1 RePationships on the Control Surface 

The optimization problem is formulated by expressing the mass flow 

rate, ax ia l  thrust ,  and other quantities of significance in t e r n  of 

t he i r  values e i ther  across or  on the control surface. 

The control surface f o r  the nozzle, i l lustrated i n  Fig. 2.1, i s  an 

arbi t rary three-dimensional surface constrained by the e x i t  contour of 

the nozzle and the kernel of the flow. 

direction cosines given by eqns. (2.2) defines the control surface. 

The uni t  normal vector,%, with 

Since the control surface is a three-dimensional surface it is 

convenient t o  transf o m  the pertinent equations t o  the two-dimensional 

( r ,  $)-plane. The transformation corresponds physically t o  projecting 

the  control surface onto the (r, $)-plane.* 

transformed (r, $)-plane wfal be denoted by (d/dr) and (d/rdj6)= t o  

different ia te  them from the partial derivatives with respect t o  the  

three-dimensional spatial coordinates. 

Partial derivatives i n  the 

6 

2.2.1 Transformat ion Equat ions 

The control surface can be described parametrically by the  equation 

F (r.9 6 9  2)  = 0 

z = f (r, 16) 

(2.30) 

Equation 2.30) can be solved fo r  z i n  t e r m  of" r and # t o  give 

(2.31) 

which can be used t o  locate the  control surface if the function f(r, $) 

is known. 

the  (r, $)-plane permfts ~ ( O P  z )  to be considered as a dependent variable. 

The proJection (transformation) of the control surface onto 

The transformation equations are  
* The vector quantit ies on the control surface are not proJected in t h i s  

transformation. For example, the quantit ies V, e ,  and are the same 
f o r  corresponding points on the two surfaces but their  gradients will 
transf o m  in accordance wtth the  transformation quat ions 
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The partial derivatives of f can be evaluated in  terms of the angles a: 

and (which define the normal t o  the  control surface) as 

df = t a n e  cos a: br (2.34) 

$ = t a n $  s i n a  (2.35) 

Equations (2.32) - (2.35) are used f o r  transformation from the control 

surface t o  the (r, fi)-plane. The optimization problem is solved i n  the 

(r ,  @)-plane; however, as previously mentioned, the physical compatibility 

of the f l o w  is assured by proving t h a t  the control surface is a character- 

i s t i c  surface. 

from the (r, @)-plane back t o  the control surface. 

T h a t  proof involves a transformation of the design equations 

To determine the 

equations f o r  that reverse transformstion, the uni t  vector on ' the control 

surface in the plane defined by $ and $ is  denoted by:, and the uni t  

vector on the control surface and n o m 1  t o  % is denoted as %. 
angle between and 7 is $ , so that 

The 

A i  - v = C O s f  v 
or, in a more convenient form 

-A 

- =  = COSP cos e - s i n p  sin e cos ( Y -  a) V ' n  
v sin 't' 

(2.37 ) 

where eqns. (2.1) and (2.2) have been used t o  evaluate the sca la r  product. 
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The equations for the transformtion from the (r, @)-plane t o  the 

(L, B)-plane (control surface) are 

where 
- n  V nr 'z z r 

n cosy z Y P f  

n# Vz - nZ V# 
nZ cosp bl = f 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The 

integral 

2.2.2 Integral Equations 

axial thrust, TZ, and the ms3 flow rate, &, are written as 

equations Over the control surface. 

Axia l  !Rmmt: 

the area element dA is 

The element of the axial momentum flux, dTz, across 

aTz = v v di (2.44) z 

where Vz is defined by egn. (2.1), V Vz is  the ax ia l  camponent of 

velocity, and d.& is the differential  element of mass flow across the 

element of area dA shown i n  Fig. 2.8. Hence, 
A A  

& = p ~ * n d ~  (2.45) 
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u 
c o s @  dA * 

FIGURE 2.8 
ELEMENT O F  A R E A  dA ON THE 

CONTROL SURFACE 
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The s c h r  product Tii' 
dA is given in terms of dr  and djh i n  the transformed (r, jb)-pletne by the 

equation 

is evalwteii from eqn. (2.3). ~ h t  area element 

d 
= COS! 

The axial thrust is the  sum of' the  pressure di f fe ren t ia l  and the 

axial momsntum flux. Thus, 

where S is the area of' integration i n  the (r, #)-plane and 
n 

ro v" sinp cos e 
cos g F1 E r (P - Pa) + (2048) 

The term (P - Pa) represents the difference betweexi the gas pressure a t  

t h e  control surface and the  ambient pressure. 

Mass Flow Rate: The mss flow rate is t o  be held constant in the 

optimization problem. Using eons. (2.45) and (2.46), the  mass flow rate 

is expressed as an integral over the area S by t h e  equation 

I% = I/ F2 d r  djb = constant 

where 

ro v sinf 
cos p F2 5 

\I 

2.2.3 Constraint Equations 

The constraints imposed on the problem are of two  types, namely 

( a )  gas dynamic constraints, and 

(b) geometric constraints. 
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, 
Gas Dynamic Constraints: The gas dynamic constraints are imposed t o  

ensure that the flow on the control surface can be matched t o  t h e  flow i n  

the kernel without violating the  laws of gas dynamics (mechanics). To 

enumerate, f i r s t ly ,  the assumption of steady flow requires that the  mass 

flow rate  through the qozzle be a constant value which is  determined by 

the prescribed i n i t i a l  conditions. 

related to the irrotational flow conditions which, in real i ty ,  is comprised 

of three separate conditions f o r  t h e  camponents of the vort ic i ty  vector. 

The vorticity camponmts nomud. t o  a streamline are zero if the homen- 

tropic flow relations of Section 2.1.2 are imposed. 

however, the component of the  vort ic i ty  vector along the streamline must 

be zero. That constraint condition w i l l  be satisfied, it may be observed, 

if the component of W i n  any direction other than the direction normal 

t o  V is zero. Therefore,the i r rotat ional i ty  condition will be satisfied 

by a homentrodic f l 6 w  if' the component of the vort ic i ty  vector no& t o  

the control surface is zero, provided, of course, that t h e  velocity 

vector does not l i e  on the control surface. 

i 

A second gas dynamic constraint is 

I n  addition, 

A 

A 

Ecpations (2.42) - (2&5) are used t o  traneform the components of 

the vort ic i ty  vector, eqns. (2.14) - (2.16), onto the  ( r ,  $)-plane 

giving r i se  t o  the following definit ive equation which merely states the 

assumption of irrotationali ty.  

I 
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A~ = - COS e cosg  COS + sine sin e COS u (2655)  - sin e cos p A5 cos cy 

As = sin 8 COS sin 

Equation (2.51) requims the component of the  vor t ic i ty  vector 

normal t o  the control surface t o  be zeroo 

A t h i r d  gas dynamic constraint I s  impsed on the boundary and requires 

the component of t h e  velocity vector normal t o  the 8urf'&ce t o  be zero. 

This con-int is discussed in Chapter 4, 

I n  stunumrythe gas dynamic constmfnts are the cons tacy  of the rate 

of ma86 flaw, eqnc (2.49), t he  hamentropic flow conditions, eqnsu (2.8) 

and (2.9), the irrotationa;lity condition, sqno (2051)~ and the boundary 

condition* The condition of' constant mass flux and the i r ro ta t iona l i ty  

conditloa are impas@ using the Lagrange multiplier technique, the 

hozcntmpic flow conditiom me imps& by substi tution i n  the variational 

problem, and t he  boundary condition is imwsed on the  boundary. 

--- Geometric Conctraintc: The geometric constraints are the condStiona 

impwed on the nozzle geometry and cre of primary interest  t o  the design 

engbetro Since the solution t o  the problem under consideration is 

dt.;:cndent on the flow vrriable relationships on the control surface, the 

gconctrlc constraints must be expressed i n  tenas of the  variables on the  
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control surface and its boundaries. 

constraints w i l l  be imposed on the outer boundary of the  control surface, 

that  is, the intersection with the nozzle exi t ,  since the relationship 

between the constraint equations and the nozzle geometry can be 

interpreted more readily on t h i s  boundary. 

For the most part the geometric 

Geometric constraints involving the control surface boundaries a re  

discussed in Chapter 4 and include conditions on both the  nozzle length 

and the exi t  geometry. 

the condition of axial symmetry a lso can be considered t o  be a geometric 

Thus, f o r  example, f o r  an misymmetric nozzle 

constraint 

It should be noted that different boundary conditions can be imposed 

on t h e  problem without affecting the design equations. 

2.3 Variational Relations 

The mathematical problem of optimization related t o  three-dimensional 

nozzle design consists of the formation of a variational integral and the 

application of the calculus of' variations t o  determine the relationship6 

among the  flow variables on the  control surPace which w i l l  optimize the 

thrust 

2.3.1 Formation of the Variational Integral  

The variational integral, I, is formed by using Iagrenge multipliers 

t o  form a l inear  canibination of t h e  axial thrus t  and the constraint 

equations on the control surface. Thus, 
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and F are defined by eqns. (2.48), (2.50), and (2051.) where Fa> F2$ 

respectively, and A, and h are Lagrange multipliers. Note that A 
3 

3 
must be a constant whereas h can be a function cf the independent 

variableo r and j6. For convenience the term G is defined 88 

3 

G = F 1 +  A2 F2 + A3 *3 

Upon exmding, 

(2.59) 

(v COS e + A,) rpv s h f  

cos 6 G = r (P - pa) + 

(2.60) 

where the coefficients - As are defined by eqns. (2.52) - (2.n). 

The control erurface projected onto the (r, #)+Lane is i l lustrated 

in Fig. 2.9. The outer boundary, p, encloses the area of integration, 

S, and represents the nozzle exi t  contour. The variables evaluated 

on p are assigned the subscript e to  denote the values which apply at  

the exft l i p  of' the nozzle. For example, t he  exi t  radius of the nozzle 

is denoted by re,where re may be a function of 60 Thus eqno (2.58) can 

be rewritten by including the limits sf integration as 

(2.61) 
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Y 

FIGURE 2.9 

INTEGRATION AREA, S ,  OF THE NOZZLE CONTROL 

SURFACE PROJECTED ONTO THE (f,#- PLANE 



. 
’ 

45 

I 

2.3.2 Application of the Calculus of Variations 

The next s tep in the 8OlUtiQn of the optimization problem i8  t o  

apply the calculus of‘ VariatiQnS t o  t h e  variational integral. A 

didactic derivation of the  variational relation8 which are required t o  

solve the  variational problem is given i n  Appendix B e  The results of 

that analysis can be stated as follows: 

Consider the integral  

where € is the variational. parameter. 

represent p dependent Variables (such as the  problem variables V, 

The variables wi( i = 1,2, ep) 

j6, \y , etc.); the terms Ri and Ti are defined by the equation6 

and the d-in of integration is illustrated i n  Fig. 2.9. 

the baundsry r is permitted t o  vary, that is, if the 

integration l imi t  re is a function 09 the  variational mrameter E, 

then the variation of 1 i n  eqn. (2.62) is 

(2.64) 



eqn . 

I n  eqn. (2.64), the element dl is along the boundary r i n  a positive 

8en~e (keeping the area S always on the l e f t ) ;  the  v e c t o r s  is the 

unit outward normal t o  f as i l lustrated in ~ i g .  2.9; the term E~ 

is the Euler-Lagrange equation f o r  the i- variable. From eqn. (B-18) th 

The repeated variable index i i n  eqn. (2.64) indicates a summation 

on the  index in accordance with standard convention. Hence, 

Ei 8wi = 5 6w1 + E2 6w2 + i I 9 + E 6w 

etc. 

Now the variational integral I, egn. (2.61), is of the same form as 

(2.62) where the dependent variables wi(i = 1,...5) are V, e, c y y  a, 

(2.66) n n  

and g 
variation of eqn. (2.61) is given by eqn. (2.64) where 

The variables P and p are functions of V alone. Thus the 
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I 
I 

The variations Sa and 6 are not independent but ere both related 

i t o  variations in f by eqns. (2.34) and (2.35). Let 
, 
I 

where the tramformation eqns. (2.32) and (2.33) are employed t o  obtain 

the derivatives in the (r, @)-plane. 

The variations of f r  and f 
b 
I obtained from eqns. (2.34) and (2.35), P 

are 

sin a 6a cos a - 
=r = 2 - t a r  

=Os P 
r sin a 6(3 + r t a n p  COS a scr 

(2.77 1 

(2.78) 

in terms of 6fr and f3F gives e pl Solving for Sa and 8 

(2.80) 
I 6f#) 

cos a 
r 

Hence, substituting egns. (2.79) and (2.80) into eqns. (2.70) and (2.71) 

- c t n p  (sin CY titr - - 

and adding yields 



. 

where 

and 

sin a + c t n Q  cos a 2 cos B 3' r r aa a? 

(2.82) 

Whether 6fr md 6f can be related now depends on the  continuity 6 
and smoothness of the  control surface. To ensure tha t  the control ourface 

is  a continuous, smooth surface one can impose the integrability condition 

on f (or 2).  The integrability condition is  

(2.84) 

which can be considered as an additional constraint equation. U s i n g  

eqns. (2.32) - (2.35), eqn. (2.84) becomes 

in which form 

integrabi l i ty  

it wi31 be used later as a design equation. 

conlition permits interchanging the order of' 

and the partial dif'ferentiation in eqn. (2.81) so that 

and 

Imposing the 

the variation 

Hence the terms E6 Wr + 
f o m  

8f6 i n  eqn. (2.81) can be exprnded in to  the 



t 

I 

I 
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I 
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ApprYiner Stokes' Theorem in the farm of eqno (B-9) (see Appendix B) to  the 

last two  terms of eun. (2.88) and writing 

6f dl 

a d  (2.90 

(2.89) 

into eqn. (2.64) for the 

variation of f yields the result 

where 



To sa t i s fy  eqn. (2.9l), the  integral  of €$ over the control surface 

muet be identically zero and the integral  of H over the boundary also 

m u s t  be identically zero. On satisfying the condition that the integral  

of H1 is zero on the  control surface one obtains the design equations 

2 

for  the  control surface which are deduced in Ohapter 3. 

t h a t  the integral  of H is zerc over t h e  boundary together with the  

constraint relations on the boundaries lead t o  boundary conditions which 

are discussed i n  Chapter 4. 

The condition 

2 

2.4 Summary of the Problem 

The overall  objective is t o  determine the three-dimensional thrust 

nozzle contour tha t  will produce the maxinnun axial thrust  when subdected 

t o  constraints of fixed mass flow rate, l imited overall  length, shock 

free i r r o t a t i o n a l  flow, and a prescribed ex i t  section contour. The 

design of t h e  subsonic, transonic, and i n i t i a l  expassion contour is  

determiued on the basis of design c r i t e r i a  other than thrus t  losxiaiza- 

t i o n  and, therefore, is expected t o  be independent of the optimlzatlon 

criteria. Conse~uently, a U  portions of the nozzle contour except the 

supersonic contotk are considered t o  be known for pupo8es of ~3aximieing 

the thrust. It is further assumed that t h e  flow varhblss in the kernel 

of the ncizzle (see Fig. 2.1), which are necessary f o r  f’urther analysis, 

are available. The objective of the research presented in %hie report 

consist6 in the determination of the supersonic contour of a t h e -  

dimensional noezle of given e x i t  shape, limited length, and fixed mass 

flow rate, which w i l l  produce the maximum 8xh.3, th rus t  and maintain a 

shook free i r ro ta t iona l  flowo 
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It is convenient t o  divide the procedure f o r  the solution of the 

problem into three parts, namely 

( a )  the mathematical formlat ion and solution of the optimization 

problem, 

(b) proof of t he  compatibility of the mathematical solution with 

physically possible flow fields,  and 

(c)  the development of a methodology f o r  determining the optbum 

supersonic contour. 

The optimization problem i s  mathematically fonrmlated by introducing 

a control surface which is constrained by the ex i t  contour and the kernel. 

The axia l  th rus t  which is t o  be maximized as well  as the constraint 

relationships are expressed k terms of the problem variables on the 

control surface and i ts  boundaries. 

The solution of the optimization problem consists of applying the 

optimization techniques (ut i l iz ing the calculus of variations) t o  

determine the relationships among the problem varhbles on the control 

surface which w i l l  produce the maximum axia l  thrust under 

imposed. 

equations and are derived in Chapter 30 

the constraints 

Tbe relationships on the control s u f a c e  are the design 

In deriving the design equations, it is necessary t o  ensure that  the 

flow field which produces the optimum thrust  conditions on the control 

surface can be matched with the f low f i e l d  already established in the 

kernel. 

character is t ic  surface Pn the flow and, therefore, is uniquely detembed 

and thus ex is t se  Section 3.2. 

This may be achieved by showing that the control surface is a 

The proof of the  existence is contained 



In Section 3.3 the design equations f o r  axisymmetric flow are  shown t o  

be a special case of the  three-dimensional design equations. 

I n  Chapter 4 the boundary equations and t h e i r  relationship t o  the 

B’ometric constraints imposed on the nozzle exi t  a re  discussed. Finally, 

in Chapter 5 a methodology fo r  applying the design equations t o  determine 

the optimum supersonic three-dimensional nozzle contour i r  discussed. As 

is most often the case when considering supersonic flow problems, the 

methodology involves numerical techniques and trial and error  solutions. 

The problems involved in the methodology f o r  determining the design 

contour are twofold: (a) those associated with the solution of the 

mathematical equations by numerical means, and (b) those associated with 

computerizing the equations. 

Chapter 5 

Those problems are discussed b r i e f ly  i n  
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30 DESIGN EQUATIONS 

The des- equations are the equations relat ing the flow variables 

cm the control surface pad, together with the bouudary equations, provide 

the mlationships needed t o  locare t h e  control surface and t o  calculate 

the f l o w  variables on it. The design equations include the equations 

which arise from considering possible variations in  the variable6 V, 8,  

aad f on the cantrdl surface and the constraint equatiopa which 

must hnzd on t he  control surface. 

B t h i s  chapter the design equations are derived in Section 3.1. 

I n  Section 3.2 Che design equations are employed t o  show t ha t  the cmtrol 

surface must be a characterist ic surface w d  Is therefore unique. And 

in Sectian 3.3 the  design equations for sx&?ymmtric p l o w  are shown te 

be a spec ia l  case of the ganerd  three-dimeas,icwJ. design equations 

derived in Section 3.1. 

The boundary equations are discussed sqparately Chapter 4. 

3.1 Derimtioa of the Design Equation2 

To obtain the maxiuxum axial 

m a s t  be zero where 3 is defbed  

thrus$, the integrrtl 

bJr eqn. (2092). That is 
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where El, E2, E 

(2.82), and (2.83),  respectively. 

and 9 are  defined by eqns. (2.67),  (2.68),  (2.69),  3' 

I n  eqn. (3.1) the area of integration, S, is  the projection of the 

control surface onto the (r, @)-plane and is  represented by the area 

enclosed by the curve r e in  Fig. 3.1. The curve rk represents the 

projection of the intersection of the control surface with the outer 

boundary of the kernel onto the ( r ,  #)-plane and divides the area S 

into an inner area Sk common t o  the kernel and an outer area S 

t o  the kernel. 

external e 
Hence eqn. (3 .1)  can be written a6 the  sum of t w o  

integrals i n  the form 

Over the area Sk the variables V, 8 ,  y are  determined by the i n i t i a l  

conditions. 

requiring the surface Sk t o  be a characterist ic surface and continuous 

with the surface Se. 

on the portion of the control surface external t o  the kernel. 

the term "control surface" hereafter w i l l  apply only t o  tha t  portion of 

Further, the variation Sf can be made zero on Sk by 

Consequently, the  design equations apply only 

Hence, 

the surface external t o  the kernel. 

The problems involved with matching the control surface with the 

kernel of the flow a re  discussed as part of the methodology in  

Chapter 5 .  

Consider now the variation over the  area S , namely 

611 = if HI d r  d@ = 0 

e 

e 

(3.4) 
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FIGURE 3.1 

CONTROL SURFACE PROJECTION ON THE 
( r ,# )  - PLANE SHOWING THE BOUNDARY OF 

THE KERNEL, rk 
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On the area Se only two of the f a r  variables V, 8, L)/ , and f are 

actually independent; however, the heretofore unspecified Lagrange 

multipliers make it possible t o  consider a l l  of the four variables a5 

independent. Consequently, invoking the classical arguments of varla- 

t iond.  calculus it can readily be seen that the coefficients of the 

variations SVI 66, 6 , and Fif in eqn. (3.2) must each 'be identically 

zero. That is, 

(3.7) 

and 

where G is  defined by eqn. (2.60), Ri and Ti ( i  ,O l,2,3) are defined by 

eqno, (2.72) - (2.74), and E6 and 5 are defined by eqns. (2.82) and 

(2.83 1 
The indicated differentiations i n  eqns. (3.5) - (3.8) are long 

and tedious but straight forward. To reduce the  presentation of the 

algebra, certain recurring groups of terms are redefined as follows. 
v COS e + A, 

- (3.9) x2 = V 
cos (3 x -  - .L' 

3 - PV 
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4. 2 sin e cos B cos e cos (Po a) (3.13) 

In terms of those definitions, eqn. (3.5) can be expanded as 

- 5 = p + r s h  e ( s i n W  D~ -  COS^ D ) 6 

= o  V V 
r I I""' dr 

sw sin 

+ cos e 

In eqn. (3.14) the term 

s i n a = x  rtanQ s i n a  3 rv r tang V 
(3.16) 

and the term 

A sin$ cos a 
V = x  3 rtaae cosa  

(3.17 1 
Thus, 

r tan (sin a D~ - cos a D ) Ib 

The hi3t line of eqn. (3.18) is zero due to  eqn. (2.85); thus, eqn. (3.14) 

becomes 
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- ~ = ~ + r s l n e ( s i n ( V  D r - c o s P  D )  6 

f 
(sin at Dr - COS Q D ) =I 0 (3.19) I + r cos e tan 

In an analogous manner eqn. (3 .6)  is expanded to  give 

= h2 + r V  cos e (sin Dr - c o s p  Dd) - *2 

- rv sin e tan f (sin a D~ - cos a D ) = o (3.20) B 
where 

Equatim (3.7) expands into the equation 

E3 = h3 - r V  sin e   COS^ D~ + sinI)/ D$ = o (3.22) 

where 

h rpP x2 sin e tanf sin ( ~ y -  a) 3 

Equatian (3.8) becomes 

where 

h4 3 r p 6  X2 sin e coscc/ 

and the condition 

(3.23) 

has been used to reduce the result. 
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EQations (3.19), (3A?O), (3.22) and (3.24) correspond t o  eq=s.(3.5) - 
(3.8), respectively. Further reduction is now possible. Solving eqns. (3.20) 

and (3.22) f o r  Dr and D the following equations a re  obtained. 15 

and 

3-  x2 + sia e COSY 
pv - s inp  casp  

where \ 

and 

the  result as far as possible one obtains the  result, namely, 

(3 .32)  t"'p = t a n p  2 

From the problem geometry it is readily deduced that p = p . This 

result is significant in that it requires the control surface t o  be i n  

a characterist ic direction. 

Equation (3.24) can be simplified by using eqns. (3 .28 ) ,  (3.29), 

and (3.32) and expanding the partial derivatives. The following equation 

is obtained as a result of' the simplification. 

rpv2 x2 
sin p cosQ V dr V 3 d r  6 [3(g) + - (  B2 dV ) + B  (2) 

# 
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? 

I 

3 3 A COS e + COS p ctn p sin e cos? cosy/ 

B~ z A~ COS e + COS p ctn p sin e COS g sin 4' 
B - A sin 0 - sin p COS? COS 8 COSY (3.36) 

Bk = A8 sin 0 - sin p COS COS 0 sin (y (3.37) P 
sin p sin e  COS^ sin Y (3.38) B5 - 

(3.34) 

(3.35) 

9 

3 -  9 

(3.39) 

In summary, the four equations derived by employing variational 

techniques on the control surface, namely eqns. (3.28), (3029), (3.32), 

and (3.33) plus the constraint equations, eqns. (2.49), (2.51), and 

(2.85), constitute a set of seven design equations with the seven 

unknowns V, e, y /  , a, 
t i on  of the design equations is discussed in Chapter 5. 

, h 2, and A,. A methodology f o r  the solu- 

1 

3.2 Proof of the Existence of the Solution 

The design equations derived i n  Section 3.1, along with the boundary 

equatims, are sufficient for  locating the control surface and f o r  

determining the flow properties on it. 

that it is possible t o  produce the optimum f low conditions on the ccmtrol 

surface with a shock f r ee  i r ro ta t iona l  flow which KU1 match the given 

flow in the kernel. That is, the constraints employed in deriving the 

des- equations do nut expl ic i t ly  require that a shock free flow field 

exist which wlll produce the desired flow conditions and a l s o  match the 

flow in the kernel. I n  general, the real izat ion of such matching is 

However, there i s  no assurance 
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highly unlikely unless the control surface is a characterist ic surface. 

If, however, the control surface can be shown t o  be a characterist ic 

surface, a matching of t h e  flows is possible and the compatibility of 

the derived solution is assured. It, therefore, is suff ic ient  t o  show 

that the control surf'ace is a characteristia surface." Thus the approach 

used here is first t o  assume tha t  the  constraints imglicit ly require the 

control surface t o  be a characteristic surfacehland next t o  show tha t  the 

foregoing assumption is  valid by demonstrating that the design equations 

define the control surf'ace as a characterist ic surface. 

In  Section 2.1.3 the necessary and suff ic ient  conditions f o r  a 

surface t o  be a characterist ic surface are discussed. Briefly a 

characterietic surf'ace must s a t i s f y  two requirements. First, it must 

be oriented in a characterist ic direction as rewired by eqn. (2.17); 

and second, the compatibility equatiocs,eqns. (2.28) and (2.29),must be 

valid on the surface. Those conditions, i n  fact ,  will be demonstrated 

t o  be valid.  

It is evident fram the design eqn. (3.32) tha t  the control curface 

should be oriented in a characterist ic direction. Therefore, the first 

of the conditions required f o r  the control surface t o  be a characterist ic 

surface is assured. It, then, remains t o  show tha t  the design equations 

and the constraint equations may be employed t o  derive the compatibility 

equations, eqns. (2.28) and (2.29). 
* It maybe observed that one may have also imposed the condition that the 

control surface be a characteristic surface. While that constraint 
would also lead t o  a physically possible solution, it does not assure 
t h a t  the design equations by themselves would lead t o  t h e  condition that 
the control surface be a characteristic surface. Furthermore, it is 
found in practice1 that such a constraint leads t o  rather large dif-  
ficulties in the methodology f o r  the  final computation of the flow. 

t 
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The procedure f o r  deducing the compatibility eqn. (2.29) is t o  

trsnsform the constraint eqn. (2.51) from the (r, $)-plane t o  the control 

sUrface. 

direction the tran$formation eqns. (2.38) and (2.39) can be employed t o  

transform t o  the (L, N)-coord&ates on the  control surf'ace. 

transformed constraint eqn. (2.51) becomes 

Since the control surface is oriented in a characteristic 

The 

It is then necessary t o  evaluate the various terms and coefficients 

appearing in eqn. (3.40). The coefficients ~1 - 
eqns. (2.52) - (2.77) and the coefficients 5, a2, bl, and b2 are defined 

by eqns. (2.40) - (2.43). From eqns. (2.38) and (2.39) the relationships 

are defined in 
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are readily obtained. 

In evaluating the coefficieats C1 0 C the angle 6 is introduced 

as defined by eqns, (2.26) and (2.27). The choice of sign in eqss. (2.26) 

and (2.27) is d e  by defining 6 as the angle measured ccriter clockwise 

from the (V, 2)-plane to the (V, L)-plane. Then, on the basis of 

geometry, eqn. (2.26) becomes 

7 

. A A  - L A  

and eqn. (2.27) becomes 

The coefficients C1 = C f9 eqns. (3.41) - (3.47) are obtained in 
7 

terms of the angles 1.1~ 8, and 6 as follows, 

c l = c  = o  7 
c2 = cos p 

c3 = sin 6 

= sin p cos 8 c4 
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Substituting in eqn. (3.40) for C1 - C from eqm. (3.52) - (3.57) 
7 

and dividing throughout by cos p, the followdng equation is obtained. 

1 av sin (g) + tan &I cos 6 (-) de 
dN L 

- (0) +- 
cos &I dL a L  

(3058) 

which is  precisely the compatibi3ity eqn. (2.29). It is apparent that 

eqn. (2.29) arises solely from the irrotatiosality constraint. 

Next, in order to  derive the compatibility eqn. (2.28) from the 

design equations, cqn. (3.33) is trimsformcd to the  (E, N)-coordinates 

using eqns. (2.38) and (2.39) to obtain 

?L al + bl 

B1 a2 + b2 

B3 al + B4 bl 

B a + B4 b2 
3 2  

B5 % + B6 bi 

B a + B6 b2 
5 2  
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To evaluate 

and ( 3 . 3 )  f o r  A8 and A 

and eqm* (3.50) and (3.51) fo r  sin 6 and cos 6 are employed. After 

some algebraic manipulation the  following resul t  is obtained. 

* 5 eqns. (3.341 - (3139) for  B,. - BSl eqns. (3.30) 

eqns. (2.40) - (2.43) f o r  al, a2, bl, and bg, 9’ 

2 5 = COS p sin 8 sin 6 

2 5 =  COS^ COS 8 + sin e sin 6 COS p 

2 K4 = 0 s i n  6 cos 8 sin p 

Equations (3.40) and (3.59) can now be conibined t o  eliminate the  

term containing (dV/dN),. 

equation is 

It is  easily verified that the  resulting 

(3.74) 

If eqn. (3.74) is mulitiplied by I- sin p/(cos2 P cos, )] , one obtains 

precisely the compatibility eqn. (2.28) as the result ing equation. 

It has now been established tha t  (a) the control surface is 

oriented i n  the direction of the  characteristic, (b) the compatibility 
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eqn. (2.29) my be obtained starting from the  i r rotat ional i ty  condition, 

and (c) the compatibility eqn. (2.28) may be obtained starting from design 

eqn. (3.33) and the omstrabt eqn. ( 2 m 5 l ) m  Thus the control surface 

defined by the  design equations i s  a characteristic sUrface, and the 

coqqt fb i l i ty  of the flow cm t he  control surf'ace with the flow in the 

kernel i s  assured. 

3.3 The Special Case of Axisymmetric Flow 

The three-dlmeneimal design eqns. (3.24), (3.28), (3029), and 

(3.32) reduce t o  the axisymmetric design equations2 as a special Case. 

The conditions f o r  axisymmetric flow are  

(dv/a16Ir = (de/dB>, = (dp/dB), = (dh3/dfOr - 0. Substituting these 

conditions into eqn. (3.32) yields the relatianship 

= tan p = ctn ( e  - e )  

v= 0, a! = ~f, and 

2 2 

From gemetric considerations eqn. (3.75) becomas 

ta2p (3.75) 

P =  

Imposing 

p - e - ?  (3.76) 

the axisymmetric flow conditions an eqn. (3.28) yields 

3' anti,since h 

A, cosp 1 

3 =constant (3.78) rV 

a relationship which adds nothing t o  the problem solution. 
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I "  

Equation (3.29) becomes 

(v COS e + h 2)(~in e - sin sin p) 
+ sin e (3.79) P 

3 L O L  

v COS e + h = - v s i n e t m p  (3.80) 

v sin p cos r p  

which yields the resul t  

when eqn. (3.76) is employed to  e l i m l t e  

becomes 

0 Finally,  eqn. (3.24) 

dr [I rpv (v cos 0 + A,) sin e] = o (3.81) 

under the axisymmetric flow conditions, 

substituting from eqn. (3.80) t h e  following equation is obtained. 

Integrating eqn. (3.81) and 

2 rp+'sin e tan p = k, (3.82) 

where k, is the  integration constant. 

Equations ( 3 . ~ 6 ) ~  (3.80), and (3.82) a re  equivalent t o  the  design 

equations derived by Rao2 f o r  t h e  optimum thrust  design of an axisynrmetric 

nozzle .* 

* The design eauations (3.76), (3.80), and (3.82) differ from those 
obtained by Rao due t o  the.notation dlf'ferences and the method of 
describing the control surface. When these differences are taken 
in to  account the two sets of equations ere identical. 
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40 B O M Y  CONDITIONS 

The design eqns. (3.28), (3.29), (3.331 and (3.34) which a re  

derived in Chapter 3, together w i t h  the ccnstraint relations (2.49), 

(2.51), (2.85)) and e i ther  (2.34) or(2.35), establish relations among 

the dependent variables on the control surface, namely V, C, (y , a, 

f, X m d  20 However, fn order t o  solve the design equations it i o  

necessary t o  know t he  values of the dependent varhbles on the boundaries 

of t h e  control surface. The boundaries of the control surface are: 

(a) t he  boundary a t  t h e  intersection of the kernel with the control 

surface (the baundary rk i n  t h e  ( r #  @)-plane, i l lus t ra ted  in  Fig.  3.1) 

and (b) t h e  boundary a t  the  intersection of the  control surface t i l th t h e  

nozzle e x i t  contour (the boundary r e  i n  t h e  (r, @)-plane, i l lus t ra ted  

i n  Fig. 3.1). 

the  ex i t  section of the  nozzle. 

may be divided in to  two  parts. 

, 
3 

The l a t t e r ,  f o r  any nozzle, pe r t a imto  the coiiditlons a t  

The boundary conditions accordingly 

1. A t  the inner baundaa: The conditions of flow a t  the inner 

boundary must match the flow conditions in t h e  kernel which i n  turn 

depend upon t h e  known or  prescribed conditions i n  the wholly supersonic 

region (downstream of the throat)  and the i n i t i a l  turning of the nozzle 

~ i a l l .  As stated ear l ier ,  t h e  f l o w  conditions immediately downstreem Of 

the throat a re  f u l l y  prescribed, while  the extent of the i n i t i a l  turning 

of the nozzle w a l l  may become part of t h e  f i n a l  process of i t e rs t ion  

required for  determining t he  optimized flow geometry. 

i 



2. A t  the : The boundary conditions i : t  the outer 

boundary re la te  the flov mriables  snd the variation of the flvd voriobles 

around the contour forming t h e  ex i t  section of the  nozzle. 

The primary interest  in evolving boundsry conditions theref ore 

should rest a t  the outer 'boundary. A set of relationships must be pre- 

scribed which relate the flow variables among themselves wfiich are v a l i d  

expl ic i t ly  at  the ex i t  section of the nozzle. 

These relationships or  boundary equations arise from three require- 

ments. The first requirement is t h e  condition t h a t  is imposed on the 

flow by the f ac t  tha t  the f l o w  boundary is a continuaus stream surface 

and w i l l  be referred t o  as the natural boundary condition. The natural  

boundary condition requires that the component of the velocity normal 

t o  the nozzle w a l l  be zero. 

The second source of boundary equations is  the geometric constraint 

relationships which are  imposed on the shape of the flow contour at  the 

e x i t  plane. 

geometric constraints which can be imposed. 

There is some f l ex ib i l i t y  in the d e r  and form of t h e  

For example, only nozzles 

with ex i t  contours which l i e  on a plane normal t o t h e  z-axis may be 

considered, as is i n  f ac t  done in t h i s  chapter. It is possible, how- 

ever, t o  consider cases in which t h e  ex i t  contour may be a function of 

j6 either in a prescribed or in an arbitrary manner. 

variational problem it is  important t o  distinguish among boundary 

contuurs that are prescribed, partially prescribed, or lef t  free t o  seek 

the i r  optimum value. For example the length may be prescribed t o  be D 

given constant for a l l  points on the nozzle ex i t  boundary or  it may be 

In relat ion t o  the 



prescribed t o  be a given function of 6 as is done i n  t h e  second problem 

example in Chapter 5. 

however, the length i s  required t o  be the same f o r  a l l  points on the 

boundary but no res t r ic t ion  is  placed on its value,then t h e  length is 

par t ia l ly  prescribed. Finally, there may be no rest r ic t ions whatever 

placed on the  nozzle length in which case it is  considered a rb i t ra ry  

with respect t o  the  optimization problem and t h e  problem requirements 

w i l l  then dictate what value the length must take t o  sa t i s fy  the require- 

ment of maximum axia l  thrust. 

In both cases the length is  prescribed. If ,  

It is noted t h a t  allowing the length t o  

be arbi t rary will result i n  the design of a perfect nozzle and, therefore, 

since the objective here i s  t o  design a shorter than perfect nozzle which 

will produce maximum t h rus t , l t  is always necessary t o  prescribe the 

nozzle length. 

employed are discussed in Section 4.2. 

Other geometric constraint relationships which may be 

The th i rd  source of boundary conditions is  the transversaLity 

equation which involves variations of the dependent variables on t h e  

boundaries. 

is wr i t ten  i n  two par ts ,  namely the variation on the  control surface 

from which the design equations of Chapter 3 are derived and the 

variation on t h e  control surface boundary. 

variation, namely the variation on the boundary, and se t t ing  it t o  zero, 

one obtains the equation 

It will be observed that in eqn. (2.91) the variation of I 

Considering the latter 

H 2 d l = 0  (4.1) 

which is the  transversali ty equation of optimization theory. 



I where $ is the uni t  outward normal t o  the boundary, E6 and El are 

defined by cqns. (2.82) and (2.83)s G is given by eqn. (2.60))and Ri 

I an8 Ti (i L= l ,2,3) are defined by eqns. (2.72) - (2.74). Thus eqn. (4.1) 

I m y  be employed as a boundary conaitfsn and requires that I 'be stationary 

on the  boundary. Boundary equations are obtained from eqn. (4.1) by 

I 
considering variations in V, 0, fp  a& re 

I It is impOl-t;aut that the bumt&ry conditions themselvee should be 

self-consistent . 
aforemmtioned boundary conditions should sa;i;isfy the  natural  boundary 

condition and the geometric constraints imposed. 

Thus, the v;zl.ia-tione htroZxeed i n  the t h i r d  of the 
._ 

1 
I 

In  the following sect iom the boundary eqwtisnss (arising from each 

of the three af'orementicaned sot.~~ces)  am considered in &etaill. The 

discussion is related t o  the design of' a rroaz-le meer the following; 

conditians : 

1. the  z-axis is a streamlinze; thus there ex is t s  i n  the flow one 

strafght s t r e d i n e ,  namely the z-a.xls;;'wid . 

the ex i t  plane or' thc nozzle is  noirmal t o  the z-axis. 2. Thus, 

the length of the nozzle (measured from 8 reference plane which 

is also norm& t o  the z-axis at  the throat)  is indegendent of 6. 
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The implications of t he  boundary geometry i n  tho ex i t  plane are 

explored f o r t h e  particular example by deriving the  boundary equations 

f o r  both an arbi t rary geometric shape at the ex i t  and a prescribed e l l i p t i c  

contour a t  the  nozzle exi t .  

4.1 N a t u r a l  BaurdaW C O n d i t i O n S  

The natural boundary condition constrains the velocity vector t o  

l i e  in the plane tangent t o  the nozzle wall at the ex i t  section. 

following developneat of the constraint equation from the natural  boundary 

The 

condition applies, as mentioned i n  the preceding paragraph, t o  tho design 

of a nozzle with the exit contour on a plane normal t o  the z-axis. 

Consequently, the e x i t  contour and i ts  projection on the  (r, @)-plane 

(the curve P e  i n  Fig. 3.1) are identical- 

a 
outward normal t o  the nozzle boundary at  the ex i t  plane by p. 

direction cosines of 2 and$ in the r, j6, and z-directions are denoted 

The 

2 

as lr, 16, lZ9 prj p p  and p,. Now, since 1 l ies on tho control surface, 

-32 2 2  

Fron the relationships p V = 0 a d  p 1 - 0 the direet ion aoehes of 

g can be ehown t o  be 
A 

(4.5) 
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(4.6 1 - sin e cos (31- a) 
pz - 

J 
The unit  vector normal t o  1, oriented in the  positive z-directiono 

4 
and in the plane tangent to the noozle wall is denoted 8s t. The 

z 
direction cosines of t are readily shown t o  be 

(4.7) sin e cos 01 C 0 8  ( V -  a) 

- s i n 2  e sin2 ( w -  a)] 
tr * 1/2 

The velocity vector is ROW resoLved into its components ln the  p, 1, 
J 

and t directions as 

v* = 0 (4.10) 

(4 012) 

EQuatlons (4.11) and (4d2) are wed to relate the variations 8V1 and 

6Vt t o  68, S y ' ,  8V, and 8ak meir use is Ulustrated i n  Section k.3.  

4.2 Geometric Constraints 

The geometric constraints can be impor~e4 by a design engineer t o  

require tha t  the thrust nozzle contour cooform t o  sgecified geometric 

conditions. One constraint already imposed is $hat the ex i t  contour lie 

on a plant normal t o  the z-axis. 

me or  more of the following. 

Other geometric constraints may include 
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4.2.1 Fixed Length 

The function f defbed  by eqnr (2.31) defines the length measured 

along the z-axis t o  a polnt an the control surface. 

represents the nozzle length. The nozzle length w i l l  be a fixed quantity 

if  the t o t a l  variation in  fe expressed by the dquation 

Therefore,fe 

* is zero. Slncc the ex i t  contour is in a plene n o d  to z, 

fe = fe  (E; r (% 6)) (4 a l k )  

and since r is  a dependent variable on the bounUary, the t9tal variation 

in the length fe can be written in terms of We and 8r as 

4.2.2 Prescribed Exit Contour 

A geometric constraint maybe imposed on the shape Of the exi t  

contaw. AS an e+% t he  baundary curve re, illustrated in ~ i g .  3.1, 

may be required t o  be e l l i p t i c  in shape, In which case the  equation f o r  fe  
could be written in the form 

r2 (e2 cos2 6 + 1) - a2 = o (4.16) 

where G is the eccentricity of the ellipse and a is tho length of the 

semi-major axis. 

allowable variation in r on re and tir =I 0. IX e i s  fixed but a is allowed 

t o  vary then 

I P  both e and 8 are prescribed, then there is no 

* 1% !my ’be noticed that eqn. (4.13) does not require the  length t o  be the 
same for  a l l  values of jd. This re s t r i c t ion  must be imposed separately. 
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If a is fixed but e 

r - -  - 6 a  

is allowed t o  vary then 

a 

And if both a and e are allowed t o  vary then 

3 
cos2 e 6 r = - & - T  a r er 

a 

(4.18) 

(4.19) 

O t h e r  geometric shapes can be prescribed f o r  the ex i t  curve re 
i n  a similar manner4 

4.2*3 Other Constraints 

Other geometric constraints, if introduced, must be expressible i n  

terms of the boundary curve reo 
constraints constitutes a separate problem and w i l l  require a separate 

a n d p i s  of the boundary equations. 

In general, each se t  of geometric 

4 3 Variational Relationships on the Boundary 

Finally, the variations of the dependent variables on the boundary 

namely 6V, 68,  6 y ,  6f, and 6r a re  considered. In considering those e 
variations i n  eqno (4.21, eqn. (4.2) i s  reduced t o  an equation contain- 

ing only Variations which can be considered as independent and arbitrary.  

The procedure f o r  reducing eqn. (4.2) depends upon the geometrical 

constraint relations which a re  introduced as boundary conditions The 

procedure is  discussed f irst  without prescribing the ex i t  geometrical 

shape; later, the particular exmFle of a nozzle with an e l l i p t i c  ex i t  

section is considered t o  c la r i fy  the implications of the  several varia- 

t ions involved ., 
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The nozzle under consideration is assumed t o  have a length independent 

of 6." Furthermore, f o r  the present, no res t r ic t ion  w i l l  be placed on 

the e x i t  shape. unit n o m 1  t o  t h e  boundary, g, i s  related t o  the 

angle c1 on the boundary by the r a a t i o n s  

r a = - s i n a  am and $ = - c o s a  (4.20) 

The derivatives in tbe $-direction a l a 6  re axe related t o  01 by the 

equations 

Hence eqn. (4.2) can bo rewritten in the form 

+ g  68 3 

i 

W h C n  thd C O e f f i C i C l l t 8  % 
cqn. (2.6O),ueing the definitiono given by eqas. (2052) = (2.V)) 

(2.72) - (2.74), (4.20) and (be=.) t o  give 

gT can be cvdwtted by different ia t ing 

* The condition that the length be independent of p is equivalent t o  the  
condition that the  ex i t  contour l i e  in a plane normal t o  the z-axis. 



77 

t 
I 

muation (4.15) is employed t o  eliminate We from eqn. (4.22) and 

the fixed length restriction, eqn. (4.13), is imposed. Equation (4.22) 

then becomes 

The term g2 6V + g3 88 + g4 6Cy can be evaluated on the boundary in terms 

of variations in the velocity components V 

Section 4.1. The variation 8Vl is deduced in terms of 6V, 68, c3$' , and 
w from eqn. (4.11) as 

Ve and Vt derived in P' 

6v1 = sin e sin (4'- a) 6v - v COS e sin (V i  a) w 

- v sin e cos ( V -  a) 6y + v sin e COS (v- a) ea 
( 4 , s )  

Thus the term 

g2 * 
a 

where X is 

eqn. (4.28) 
3 

x 6v1 - x v s i n  e COS (+a) ta (4.30) 3 3 

defined by eqn. (3.10). Substituting fram eqn. (4.30) into 

gives 

H2 = (gl - g5) 6r + X 8V1 - X3 V sin e cos (p- a) & 3 
(4.31) 

If no further restrictions are imposed on the boundary, the variations 6r, 

8 5 ,  and 8a can be considered as independent variations. Therefore, t o  

satisfy the transversality eqn, (4.1) the individual coefficients of &, 

8Vl, and €32 must be identically zero on the  boundary. 

boundary equations are: 

The resulting 
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(4.33) 

and 

x = o  
3 

which must hold on the  en t i re  boundary curve re. 
It may be observed that  eqn. (4.33) can be written i n  terms of the 

variables V, 8 ,  (y , a, e ,and h 
design eqns. (3.28) and (3.29). 

which hold on the boundary as well as the control surface can be combined 

t o  obtain the derivative of X along the boundary a the  1-direction as 

on the boundary by employing the 

That is, the eqns. (3.28) and (3.29) 

3 

(4.34) 

Now from eqn. (4.33) the value of X 

so that dX / d l  is zero on the boundary; therefore, substi tuting f o r  

is zero over the ent i re  ex i t  boundary 
3 

3 
(dX3/rdjb) and (dX /dr)  from eqns. (3.28) and (3.29),the result 

r 3 @  

is obtained which applys on the boundary r e  and can be used i n  place of 

eqn. (4.33). 

On the other hand,if one wishes t o  r e s t r i c t  the ex i t  contour of t he  

nozzle the variations 6r, 6V1, and 6a! i n  eqn. (4.31) cannot remain 

indepndent.  

with a fixed eccentricity and a variable area. 

For example, one may require the ex i t  contour t o  be el l ipt ic  

Then eqn. (4.17) re la tes  6r 
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t o  L%? at the exi t .  Further, the @e a is  fixed by the eccentricity of 

the  ellipse so that W,= 0. The transversali ty eqn. (4.1) therefore 

reduces t o  

where it has been noted that the variation 6a is independent of the 

integration around the boundary and has therefore been taken outside the 

in t eg rd .  

considered independent and arbitrary. 

With no f'urther res t r ic t ionst the variations 8Vl and 6a are 

The resulting boundary equations 

are 

and 

x 1 0  (4.38) 3 

where eqn. (4.35) can be used in place of eqn. (4.38) if desired. If, 

i n  addition, the i n i t i a l  conditions are  such tha t  planes of symmetry 

ex i s t  which contain the major and minor axes of the el l ipse,  the problem 

can be reduced t o  computing the flow in one quadrant of the ell ipse.  

Also, t he  velocity component V1 cannot now be considered arbitrary a t  

the planes of symmetry. The boundary equrtions in this  instance are 

3' cqn. (4.37) plus the equation f o r  X 

x = o  ( o <  j6 < 2) (4.39) 
3 

which is restr ic ted t o  the portion of the ex i t  contour between the planes 

of symmetry. 
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5. METHODOLOGY FOR DES?GN 

The overall problem of design of a thrust  nozzle maybe divided 

conveniently into the f ollowlng problems : 

1. design of the subsonic portion of the nozzle; 

2. design of the transonic region of the nozzle; and 

3. design of the supersonic region of the nozzle. 

If it can be assumed thak the conditions obtained in the transonic 

region where t he  flow speed is defini te ly  supersonic are the initial 

conditions i n  the design problem, the only region of interest, whether 

the nozzle is  optimized or  not, is  the supersonic region of the nozzle. 

The design of that portion of the nozzle depends upon (a) the  boundary 

conditions required t o  be satisfied a t  the throat section and at the 

ex i t  pleure of the nozzle and (b) any other constraining relations Fmposd 

upon tho f law regime. 

is, f o r  example, that the thrust  from the nozzle should be the maximum 

If one of the requirements in the design problem 

f o r  given i n i t i a l ,  baundary,and constraint conditions, the problem be- 

comes one of d e t e r m i n u  an optimized solution. 

When such an optimized solution is attempted, it has been shown in 

Chapter 3 that a control sur9ace m y  be postulated wbich intersects  the 

kernel and coincides with the  designed geometry at  the e x i t  plane of the  

nozzle; that such a control surface is unique in that it satisfies all 

of the requirements f o r  a characteristic surface; and lastly, t h a t  a sot 

of design equations m y  be obtained t o  determine the control surface. 
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The manner i n  which the boundary conditions, necessary f o r  obtain- 

the solution, may be developed is described in Chapter 4. 

the intersection of the control s"ace with the kernel and the ex i t  

plane of the nozzle, there are essen t i a l ly t en  boundary conditions related 

t o  the problem variables on the boundaries. These conditions may be 

given in terms of quantities associated with the nozzle geometry and flow 

parametors, but must be equivalent t o  the ten  boundary conditions mentioned 

earlier . 

Considering 

Util izing the design equations in con3unction with a set of assumed 

and given boundary conditions on the i n i t i a l  boundary, me can solve Tor 

the  control surface. 

given tcrminsl boundary condition80 When a discrepancy arises, it becomes 

necessary t o  apply iterative method8 of solution. 

The control surface so obtained must s a t i s fy  the 

In broad outline, therefore, the determination of' an optimized 

nozzle contour involves the following tasks which must be performed in 

the order indicated: 

1. determine the  initial conditions. That is, determine the sub- 

sonic, transonic and initial expansion contours of the nozzle 

f o r  given inlet conditions. 

discussion that adequately detailed procedures are available 

f o r  carrying t h i s  aut; 

It Kill be assumed in the present 

2. cerlculate the flow f ie ld  in the  kernel. 

compting three-dimensional supersonic flows by employing the 

method of characteristic8 is given la Ref. 10; 

The procedure f o r  
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4. 

5.  

6. 

It 
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choose the initial v d u e  boundary cnd as&ume vclues of the 

problem variables not given G n  t h a t  boundary; 

solve the design equations with t h e  applicable boundary 

conditions i n  order t o  locate the  corresponding control 

surface and t o  determine the flow variables on it; 

compare the calculated boundary conditions on the terminal 

boundary with given boundtiry conditions on t h a t  boundary. 

If tt diwrepency arises perform t h e  necenssry i terations;  and 

compte the flow f ie ld  between the kernel and the control 

surface and deternine the supersonic baundnry of t h e  

optimized nozzle b y  following the  bwndnry strevallno u t  the 

throat  section of the nozzle. 

i n  R e f .  10. 

The procedure for t h i o  is given 

is rrpparent tha t  several alternative6 may be possible i n  regr:rd 

t o  the  follo:ring, even for u particul:*r formulatian of t h e  optimization 

problcm, 

1, 

2. the choice of i n i t i a l  and terminal boundaries; and 

3. 

the manner i n  which the boundary conditions are developed; 

t h e  method employed f o r  solving the  set of design equations. 

A detailed discussion of those aspects of the  problem is beyond the 

scope of t h e  present thes i s .  

the problem forbids even a firm recommendation i n  regard t o  the procedure 

f o r  the mathematical solution of the design equations except t o  point out 

tha t  numerical methods may be t r i e d  within the limitations of possible 

non-uniformities in the convergence of solutions, 

It is merely noted here tha t  the nature of 

Howlever a general 



discussion of' the methods and the procedures tha t  may prove sui table  and 

that are presently available fs attempted i n  the remainder of t h i s  chapter. 

I n  Section 5.1 the methods available for the  establishment of the i n i t i a l  

conditions and f o r  the calculation of the flow field in the kernel  are 

d1SWsed 

Regarding the  possible methods for  the solution of the design equab 

t i a s ,  two i l l u s t r a t ive  exsmples are  discussed in Section 5.2. 

cams the des- equations derived i n  Chapter 3 are applicable. That  is 

the conditions of the homntropfc i r r & a t i o d  flow of' a perfect gas, a 

constant mass flow rate, and a smooth continuous control sudace are 

requis ihx  of the flat. The exmqiles differ from each uther in the 

In both 

following respects . 
Exanrp3c one: (a) no specific contour is prescribed for  the throat  

contour and initial cxpsnsfan cuntour; they rn not variable with 

respect t o  the optimization problem, however; (b) the length is 

prescribed and is independent of 8; and (c) the ex i t  contour is 

ell iptic with a given eccentricity and a variable area. 

EkannSlc two: 

subsonic, transonic, and initial expamian colstourj (b) the length 

is a p s c r i b e d  h c t i a n  of 6; and (c) the ex i t  contour is fixed 

and corresponds t o  the  ex i t  contour of a truncated axisymmetrlc 

(a) an axisyrrxnetric contour is prescribed f o r  the 

nozde. 

Those two examples w i l l  clarify m:) a t t L ~ c t  of thc%ap>ltc:tiion. of' the 

d&xI.gn equations. Elkample om# discussed in Section 50201, is ut i l ized  

t o  illustrate in particular the pr incipal  features of a methodology that 
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may be developed t o  desigu a nozzle under prescribed conditions. 

example two w i l l  serve a similar purpose9 it is discussed in Section 5.2.2 

primarily from the point of view of i l lus t ra t ing  when three-dimensional 

optimization procedures are unavoidable; f o r  example , i n  a modification 

of an apparently axisymmetric nozzle. 

A method fo r  calculating the intermediate flow f i e l d  between the 

While 

kernel and t h e  control surface and thus determining f i n a l l y  the optimized 

nozzle contour is discussed i n  Section 5.3. 

5 " l  The I n i t i a l  Conditions 

According t o  the  formulation of the problem as described i n  Chapter 3, 

the init ial  conditions of flow are  t o  be prescribed or obtained by cal- 

culation before the optimization problem can be taken up. They include 

the i n i t i a l  s t a t e  of" the  gas and the  wall contour f o r  the ~ubsonic,  the 

transonic, and the i n i t i a l  expansion portions of the nozzle. 

transonic, and i n i t i a l  expasion contours w i l l  generally be determined by 

such factors as the combustion chamber design requirements, heat t ransfer  

requirements, fabrication Iimftations, and special geometric requirements. 

The contours chosen determine the  flow properties fi t he  kernel; however, 

the calculation of those flow properties depends upon a solution of the  

transonic flow problem and a l so  upcm a part of the supersonic flow 

solution. 

nozzles is l i m i t e d  t o  approximate solutions f o r  axisymmetric or two- 

dimensional flows * For non-circular throat  cross sections it appears 

The subsonic, 

A t  present the solution t o  the transonic flow problem i n  

18 that the approximate methods of Sausr17 or  of Oswatitsch and Rothstein 

could possibly be modified t o  apply t o  ~ome simple non-circular throat 

cross sect ions 
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The f l o w  field in the kernel is calculated us- the method of 

characterist ics beginning on an i n i t i a l  value surface which is the 

product of the transonic f l o w  solution. 

dimensional, e i ther  the three-dimensional method of' characterist ics or  

an approximate solution technique i s  required. Although the applications 

of the three-dimensional method of characterist ics have been limited, a 

If the throat geometry is three- 

few solutioas t o  three-dimensional flow fields which have been obtained 

recently 14j15,together with advances in d ig i ta l  computer s i z e  and 

technology, indicate that solutions of three-dimensional f l o w  fields based 

on the three-dimensional method of characterist ics may become more 

satisfactory i n  the future. Procedures f o r  application of the three- 

dimensional method of characteristics are given in Refs. 10, 13, 14, 15, 

and l6. 

5.2 Solution Methods f o r  t h e  Design and Boundary Eq uations 

The design equations in terms of the (r ,  jb)-coordinates are eqns.(2.@), 

(2.51), (2.85), (3.281, (3029)~  (3.321, a d  (3.33). They are rewritten 

here f o r  immediate reference 

Equation (2.49) expresses the mass conservation constraint in Integral 

) ) F2 dr dj6 = I% = constant 
S 

where S is the area of integration i n  the (r, @)-plane and F2 is defined 

by eqn. (2.50). 

Equation (2.51) is the i r rotat ional i ty  cmstraint ,  viz. 
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where the coefficients A1 - As are  defined by eqns. (2.52) - (2.57). 

Equation (2.85) assures the continuity of the control surface. It 

d(r  tang s i n a l  (d(r ta$$ cos 
6 r ( d r  

+ sin e siny ) 
P 

+ sin e COSY ) x2 A dx 

13 ($1 r = rpV (sin p co: 

(5.3) 

(5.4) 

(5.5) 

sin e COS ( Y o  a) (5.6) 
cos e - sinf sin I.r = cosp 

where X2 and X are defined by eqns. (3.30) and (3.31), and B1 - B6 

are defined by eqns. (3.34) - (3.39). 
3 

Equations (5.1) - (5.7) consti tute a set of seven equations fo r  the 

variables V, e ,  , a, e , X2, and x3. The variable X2 is  defined by 

eqn. (3.30) as 

v cos e + A  - 
x2 - v (5.8) 
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I 

where A 
satisfying the integral eqn. (5.1). Thus, one is left with the six 

is the constant Lagrange multiplier and may be determined by 

3' eqns. (5.2) (5.7) for  the six variables, V, 8,  y /  , a, , and X 

I n  addition t o  the aforementioned variables, it is necessary t o  

determine the f'unctional relation defining the length coordinate t o  a 

point 

which can be obtained by u t i l i z ing  the eqns. (2.34) and (2.35). Further- 

more, at any point on the control surf'ace the Mach angle, p, and the 

thermodynamic variables P, p,and T can be calculated from the known 

lnitial conditions and the calculated value of V at any point . 

the control surface given by eqn. ( 2 0 3 l ) ,  namly z = f ( r ,  6) , 

Before seeking and attempting a (largely) trial and er ror  approach 

f o r  the solution of the design equations (5.2) - (5.7), some simplifi- 

cation can be achieved i n i t i a l l y  by combining the design equations t o  

reduce the number of dependent variables from six t o  four as follows. 

( a )  Ecpand eqn. (5.3) by carrying out the indicated partial 

differentiation t o  give 

where ql - q are functions of rl a and (3 . 
Differentiate eqn. (5.6) with respect t o  r and solve the result- 

ing partial differential. equation f o r  ( d d d r )  

Differentiate eqn. (5.6) with respect t o  fi and solve the  

5 

# *  

resulting partial di f fe ren t ia l  equation f o r ( d r d # ) r .  

Eliminate partial derivatives of a from eqn. (5.9) u t i l i z ing  

the results of (b) and (c) above t o  obtain the following 

partial different ia l  equation in V, e, Y , and e . 
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(5.10) 

Equation (5.10) consti tutes t h e  first of the  four desired 

equations . 
(e) Eliminate X3 between sqm. (5.4) and (5.5) by different ia t ing 

eqn. (5.4) with respect t o  6, different ia t ing eqn. (5.5) with 

respect t o  r, and equating the right hand sides. 

is a partial diffcren?ial  equation i n  V, e, l/' , a and 6 
( f )  Uti l ize  the results of (b) and (c) above t o  eliminate deriva- 

tives of a! in step (e)  t o  give a partial d i f fe ren t ia l  equation 

The resu l t  

, 

v, e ,  V' , =d Ij -1~ 

(g) The thi rd and fourth cquatlone are egns. (5.2) and (5.7) which 

may be l e f t  unaltered. 

Those four equations in t h e  variables, V, e, v/ 
the final set  of design equations on the  control surface. 

common t o  both of the exan@es t o  bo discussed under Section 502.1 and 

and (5 consti tute 

They are 

502.20 

Before disrmssing those examples, the four ogns. (5.21, (5.71, (5.10), 

and (5.311) may be examined from the point of view of the mathomtical 

I 

i 
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methods available f o r  t h e i r  so.lution. Such methods may be summarized 

as follows 

1. It w i l l  be observed that the set of four equations is  presented 

in the (r, #)-plane of the chosen coordinate system. By a 

fur ther  suitable transformation, it may be possible t o  modify 

the equations such that they are fur ther  simplified. Such 

transformations must be examined both from the point of view 

of the complexities that  may arise in numerical computation 

i n  the transformed plane as w e l l  as from the point of view of 

establishing the necessary reverse transformations. 

2. Whether or not simplification can be obtained, the errors 

l ike ly  t o  arise in the application of numerical methods of 

analysis must be carefully examined. In general, an attempt 

should be made t o  determine if the eqwtions may be clas- 

s i f ied  as hyperbolic, parabolic or  e l l i p t i c  depending upon the 

relationships among the coefficients of the p r t i a l  derivatives.* 

If the equations a re  hyperbolic, then characterist ic directions 

exis t  on the (r, @)-plane and a numerical solution u t i l i z ing  

the properties of characteristics is possible. If the system 

of equations is e l l i p t i c  or parabolic, then numerical techniques 

are generally unsat isf aetory . 
In sp i t e  of the computational d i f f icu l t ies  t ha t  may ar ise ,  it is 

possible t o  c lar i fy  many aspects of the application of the design equa- 

t ions  by considering the following i l lus t ra t ive  examples. 
* Procedures f o r  classifying systems of partial d i f fe ren t ia l  equations can 

be found in  a number of good references on applied mathematics. 
f o r  example, R e f .  19, Chapter 3 .  

See, 
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5.22 I l lustrat€ve Example One 

The design eqns. (5.2), (5.7), (s.lO>, and (5.11) f o r  the variables 

V, e, \v , and 

the variables on the uontrol M a c e ,  but are presented in the (r, @)-plane. 

They have been derived under the following conditions: 

are applicable i n  t h i s  example. Those equations r e l a t e  

1. 

2. 

3. 

4. 

5. 

6 .  

7. 

t he  flow is hc0hentropic and i r ro ta t iona l  throughout the flow 

regime,and the working f lu id  is  a mixture that can be represented 

by a perfect gas; 

the mass f low r a t e  through the nozzle is prescribed; 

the i n i t i a l  conditions a t  the throat section are prescribed 

in a region where every point in the flow is supersonic; 

the  shape of the i n i t i a l  e%pansion contour for the  nozzle is 

prescribed and, therefore, the flow variables in the kernel 

are known; 

the z-axis is straight and coincides with a streamline in the 

flow and with the direction of desired thrust maximization; 

the design anbient pressure is known; and 

the control surface i s  a continuau6 smooth surface. 

The boundary conditions a d  prescribed quantit ies (which define the 

special  feature8 of the excunple) are the followingr 

1. the length of the nozzle is fixed an& is independent of 6~ 
therefore, the ex i t  contour of the nozzle must l i e  on* pre- 

scribed plane n0rm.l t o  the z-axis; and 

the ex i t  contour of the nozzle is  el l ipt ic  with fixed eccentri- 

c i t y  and variable &mao 

2. 

i 
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In order t o  locate the control surface, one must know i n  de t a i l  the 

flow variables i n  the kernel of the flow. 

defined by the intersection of the control surface and the kernel is  

not known i n i t i a l l y  and, in fac t ,  the location of tha t  boundary eon- 

s t i t u t e s  part of the solution. 

The location of the boundary 

The boundary conditions at the e x i t  contour of the nozzle are 

eqns. (4.35) and (4.37) plus the geometric constraints of a fixed length 

independent of $ and an e l l i p t i c  exit  shape given by eqn. (4.16). 

In i t i a l ly ,  it is necessary t o  choose e i ther  the inner boundary at  the 

extent of the kernel or the  outer boundary at  the ex i t  plane as an 

i n i t i d  boundary f o r  plrposes of the numerical calculation. 

w i l l ,  in general, depend on the number of known boundary conditions on 

each boundary since each unknown condition on the i n i t i a l  buundary w i l l  

require an i terat ion loop t o  determine the correct value on tha t  boundary. 

In  t h i s  example the inner baundary is chosen as the initial boundary. 

The choice 

It is then necessary t o  assume (a)  the coordinates of the  inner boundary 

and (b) the value f o r  h ,  on the control surface. Since the variable X 

has been eliminated both from the design and boundary equations, it is 

not necessary t o  include X 

value w e  must be a continuaus closed curve encircling the z-axis and 

must be symmetric with respect t o  planes of symmetry  tha t  may exis t  i n  

the flow. 

i n i t i a l  value curveo Since the flow variables i n  the kernel are  known, 

the  choice of an i n i t i a l  curve fixes the initial values of V, 8,  , a, 
, r9 and f . The additional choice of a value f o r  h 

3 

i n  the solution procedure. The i n i t i a l  
3 

No other res t r ic t ions are placed on the initial choice of the 

(which is constant 
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over the en t i re  control surface) then permits the control surface t o  be 

calculated using a properly chosen numerical method of computation f o r  

solving the design equations. 

boundary values on the terminal boundary from the point of view of 

compliance with the known, final boundary co;lditions, 

boundary conditions are obtained by performing i terat ions on the initial 

choice of coordinates f o r  the i n i t i a l  value curve and on the i n i t i a l  

choice of t h e  constant A2.  

following items are notec? . 

It then remains t o  examine the result ing 

The desired ex i t  

With regard t o  the  i t e ra t ion  procedure the 

1. The constant mass flow requirement on the t o t a l  mass flow i n t h e  

nozzle may provide a stopping condition f o r  t h e  calculation 

of the control surface if an e x i t  shape is assumed; however, 

it is, i n  addition, essential t h a t  the mass flow also be 

constant i n  each sndU segment a 6 bounded by stream surfaces 

passing through the z-axis. The sat isfact ion of the constant 

mass flow requirements f o r  each segment requires the computa- 

t ion  of the intermediate flow f ie ld  between the kernel and the 

control surface and, therefore, that  calculation becomes €art 

of at  least one i te ra t ion  cycle. 

By satisfying the mass flow condition and iterating the value 2. 

of A 
The corresporiding nozzle contour is the optimized contour fo r  

the boundary conditions obtained on the terminal boundary and 

the anibient pressure calculated from eqn. (4.37) (using eqb(4.32) 

t o  evaluate the  integrand i n  terms of Pa). 

t o  s a t i s fy  eqn. (4.35) a control surface is  obtained. 

This i te ra t ion  
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procedure has the disadvantage tha t  it requires the calculation 

of the ent i re  nozzle contour f o r  each new set of init ial  data 

but has the advwtage that families of optimized nozzles are 

determined; thereby valuable information regarding the relation- 

ships between the i n i t i a l  and terminal boundary conditions is 

obtainea which can be used t o  improve the calculation technique. 

5.2.2 I l lus t ra t ive  &ample Two 

The design eqns. (5.2), (5.7), (5.10), and (5.11) f o r  the variables 

V, 6, 

the variables on the control surface, but are presented i n  t h e  ( r ,  #)-plane. 

They have been derived under the following conditions: 

and e are applicable i n  t h i s  example. Those equations re la te  

1. 

2. 

3. 

4. 

50 

E;. 

7. 

the flow is homentropic and i r rotat ional  throughout the f l o w  

regime,and the working f luid is  a mixture that can be repre- 

sented by a perfect gas; 

the mass flow rate thraugh the nozzle is prescribed; 

the i n i t i a l  coaditions at the throat section are prescribed in 

a region &ere every point i n  the flow is supersonic; 

the shape of the  i n i t i a l  expansion contmr f o r  the nozzle is 

prescribed and, therefore, the flow variables i n  t h e  kernel 

are known; 

the z-axis is st raight  and coincides with a stx-eamliae i n  the 

flow and with the direction of desired thrust  maximization; 

the design ambient pressure is  known; and 

the control surface is a continuous smooth surface. 
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The boundary conditions and prescribed quantities (which define the 

special features of the example) are the following: 

1. the subsonic and throat  contours are  axisymmetric and the i n i t i a l  

expansion contour i n  any ( r ,  z)-pIane is a circular a rc  of 

fixed radius; and 

2. the  exit contour and length arc prescribed i n  the following 

mnner . 
(a) An optimized axisymmetric nozzle of a given l e n g t h  with 

initial conditions corresponding t o  those prescribed in 

1 in the foregoing is  designed t o  the given design ambient 

pressure. 

The optimized axisymmetric nozzle is  truncated so t h a t  the 

ex i t  contour is on the  two-dimensional s u e a c e  which is 

normal t o  the (y, 2)-plane, s l igh t ly  concave toward the  

nozzle throat ( in  the shape of a parabola, say) and inter- 

sects the axisymmetric ex i t  contour at  two  points ( in  the  

(a) 

(y, )-plane 1 
(c) The contour and length prescribed f o r  the  example are those 

obtained fo r  the truncated axisymmetric nozzle described 

i n  (b). 

It is  noted that  the nozzle length  i n  t h i s  example i s  a prescribed 

function of the angular coordinate jd and, therefore, the problem'cannot 

be solved using the axisymmetric optimization solution since no provision 

is made i n  the axisymmetric formulation fo r  a length which varies with 

the angular coordinate. A p a r t  from the complications which arise in the  
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computation of the  flow f o r  the example under consideration, some inter- 

esting features of a theoretical  nature may be observed. 

follows r 

Those are as 

1. The control Burface which intersects the kernel of the flow and 

coincides w i t h  the ex i t  plane of the nozzle in th is  example is 

not axisynrmetric; the control surface i n  an misymmetric nozzle 

is axisymmetric. In  t h e  present example, therefore, a l l  three 

of the components of the uni t  normal t o  the control surface may 

have non-zero d u e s .  

2. The flow in the present example is nut confined t o  the (r ,  2)- 

plane f o r  every value of j6; the  flow in an misymmetric nozzle 

is en t i re ly  independent of the angular coordinater 

When the axisymmetric flow nozzle is t o  be deduced fram the 

general three-dimensional flaw, it is necessary t o  impose both 

of the conditions, 

3. 

3 0 and sin a 3 0. 

Statements 2 and j result from the f ac t  t ha t  it is not possible, in 

general, t o  reduce the design equations (or their  equivalent in some other 

optimization problem solved by variational techniques) by imposing rest r ic-  

tions on the  dependent variables. That is, the res t r ic t ion  v=  0 imposed 

on the three-dimemional design equations w i l l  not produce the design 

equations f o r  an optimized nozzle in which vz 0. This aspect of the 

problem may be seen clear ly  by reference t o  t h e  variational integral I1 

defined by eqn. (3.1). Using the definition of eqn. (3.2) the variation 

of I1 can be written 



asd E are defined by eqns. (2.67), (2.68), and (2.69) WlXre El, E29 3 
respectively and the coefficient of fif is of no consequence in the 

present discussion. The design equations were derived by setting the 

coefficients of the variations 6V, 68, 6 $' , and 69 t o  zero which is 

jus t i f ied  only if the variations can be considered independent and 

arb%trary. If the constraint 

y= 0 (5.13) 

is t o  be imposed the variation 6 

pendent and arbitrary but is, instead, identically zero. 

is  then used instead of eqn. (2.69) (E = 0 )  in deriving the design 

can no longer be considered inde- 

Wuation (5.13) 

3 
equations, 

equivalent t o  the equations derived by imposing the constraint on the 

general solution except under very special circumstances. 

It is  clear  that the result ing design equations are not 

The point i s  further emphasized by deriving the design equations 

with the constraint y = 0 but without restricting the control surface 

t o  be axisymmetric. 

I n  t h i s  example the i r ro ta t iona l i ty  constraint is  no longer required. 

The problem formulation follow6 essent ia l ly  that already presented i n  

Chapters 2 and 3, and the equations % = 0, h2 = 0, and (dh4/dr) = 0 

are obtained where %, h2, and hk are defined by eqns. (3.15), (3.21), 

and (3.25) respectively. 

the design equations 

# 

These three equations are combined t o  yield 

v COS e + A, = v sin e tsn p (5.14) 

2 Sin2  9 tan p =  
cos2cj - Sin2f sin2 a 

(5.15) 
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and 

Equations (5.14) - (5.16) are not the same equations as are obtained 

from set t ing 3/ = 0 in the three-dimensional design equations. Speaifically, 

the direction of the control surface as defined by eqn. (5.15) is no 

longer in a characterist ic direction except i n  the s p e c i d  case sin a = 0 

(an axisymmetric control surface) 

In summary, it m y  be observed that (a)  a truncated axisymmetric 

nozzle, however truncated, is not an optimized nozzle even when the 

or iginal  axisymetr ic  nozzle is an optimized nozzle, and (b) in whatever 

m e r  the length of the nozzle and the shapes at  the inlet section and 

at  the exit plane are specified, unless the f l o w  is of a lower dimension 

over the ent i re  f la t  reg-, the optimization problem m a t  be posed as 

a problem i n  three-dimansional flow, 

The remaining tasks f o r  obtaining the nozzle contour in t h i s  example 

are the same as those described under the  i l l u s t r a t ive  example in 

Section 5.2.1. 

5.3 Intermediate Flow Field Calculation 

The intermediate flow field between the kernel and the control 

surface m y  be needed t o  impose the constant mass flow restr ic t ions on 

the control surface as a function of 15 and, in any event, w i l l  be required 

f o r  the determination of the final optimized contour. 

s iona l  f low field can be calculated using the three-dimensional method of 

character is t ics  by modifying existing procedures t o  permit the use of the 

This three-dimen- 



kernel and the control surf'ace as init ial  value surfaces. Procedures 

which can be readily adapted t o  this  calculation are described in detail 

in Ref. 10. 

The f inal  contau. is  determined by computing the stream tube passing 

through the nozzle throat. 
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6. CONCWSIONS 

The problem of optimizing a flaw geometry under given initial 

conditions an8 constraint relations has been solved by the use of 

the calculus of variations. 

irrotational, homentropic, internal flow problem pertaining t o  the 

optimization of the  supersonic portion of the  cantaur of a thrust 

nozzle is posed on the assumption that the i n i t i a l  conditions and the 

ex i t  flow geometry are fixed while requiring that the value of thrust  

(or momentum) obtained be a maximum within a specified length of flow. 

In  particular a three-dimensional., 

Ji3. view of the three-dimensional nature of the flow, the length of 

t he  nozzle is, in general, a function of the angular coordinate. 

Two i l l u s t r a t ive  examples m discussed t o  demonstrate the 

nature of the problems which arise In the actual application of the 

general solutions (of the  optimization problem) t o  particular cases. 

The following are the principal conclusions which may be derived from 

the investigation. 

1. A three-dimensional supersonic flow geometry, such as is 

obtained in the supersonic portion of a nozzle, can be optimized with 

respect t o  a given set of i n i t i a l  conditions and a set of constraint 

relations.  

2. One formulation of the  optimization problem may be based 

upon a postulated control surface which can be shown under the proper 



constraint conditions t o  be a characterist ic surface and thus uniquely 

determined. 

3. While the design equations 80 obtained under cer ta in  general 

requirements, such as integrabi l i ty  of the control surfme, irrotation- 

itlity,o.nd homentropicity of flow, w i l l  apply i n  a l l  problems (governed 

by such requirements) on the control surface, each problem becomes 

specialized in  regard t o  the boundary conditions specified and the 

mnner in which such boundary conditions are  chosen t o  be employed 

for analysis . 
4. The nature of the equations determining the control surface 

and the boundary conditions required f o r  their soLution make it 

imperative that numerical methods of solution be employed. 

more, .a series of i t e ra t ive  procedures 1s required i n  re la t ion t o  the 

constmints imposed on the boundary. 

may involve the computatim of the en t i re  flow field, unless great 

simplifications are  obtained i n  the basic design equations. 

Further- 

Often the i te ra t ive  procedures 

5. When a variational problem is formulated f o r  bt three- 

dimensional flow, there is no direct  method of deducing a set of 

design equations am?;lieabLe t c  a lower dimensional flow (e ,g .  an ai- 

symmetric flow). 

f l o w  is  reduced t o  the lower d h e a s i o m l  flow may be seen clearly, 

but the solution t o  the problem of t h e  lower dimensional flow has t o  

The conditions under which the higher dimensions1 

be formultrted EL& Solved by itself’. 
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APPENDM A 

NOPATION 

A = area 

a = length of semi-major axis of e l l ipse  

= 

= 

coefficients defined by eqns. (2.40) and (2,41) 

(i = 1-6) coefficients defined by eqns. (3.34) - (3.39) 
respect ively 

a1’a2 

Bi 

bl,b2 = coefficients defined by eqns. (2.42) and (2.43) 

= (i = 1-7) coefficients defined by eqns. (3.61) - (3.47) 
respectively ci 

C = loca l  sound speed 

DrJDa = derivatives defined by eqns. (3.11) end (3.12) 

d = derivative operator 

= funct i o m l  representation of Ner-Lagrange equations 
defined by eqn. (2*65) Ei 

e = eccentricity of an e l l ipse  

F = function defined by eqn* (2.30) 

= function defined by eqn. (2.48) 

= f’unction defined by eqn. (2.50) 

= f’unction defined by eqn. (2.51) 

= function describing the control surface defined by eqn. (2.31) 

F1 

F2 

3 F 

f 



r f 

Gi 

Qi 

fIl, H2 

hi 

I 

I1 

5 
J 

2 
L 

Lr 

La 
z L 

1 
a 

lr 

1# 
i 
m 

N 

A 

L% 

*r 

partial derivative of f wi th  respect t o  r as defined by 
eqn. (2.75) 

partial derivative of f with respect t o  jb a8 defined by 
eqn. (2.76) 

function defined by eqn. (2.59) 

(i = 1-5) f b c t i o n s  defined by eqns. (4.23) - (4.27) respectively 

fmctions defined by eqns. (2.92) and (2.93) 

(i= 1-5) funct.ions defined by eqns. (3.15), (3 .2 l ) ,  (3.23), 
(3.25), and (3.26) respectively 

variational integral defined by eqn. (2.61) 

variational integral defined by eqn. (3.1) 

integral defined by eqn. (B-6) 

(i = 1-7) coefficients defined by eqns. (3.60) - (3.66) 

unit vector along; a blcharacteristic on a characteristic 
s M a c e  

r-component of unit vector L as defined by eqn. (2.21) 

&component of unit  vector L as defined by eqn. (2.22) 

z-component of unit  vector L as defined by eqn. (2.23) 

unit  vector along the  boundary of the control surface 

r-component of 1 as defined by eqn. (4.3) 

~ c o m p e n t  of 1 as defined by eqn. (4.3) 

respectively 

2 

2 

c). 

2 

A 

-8s flow rate 

unit  vector n o d  t o  control surface boundary (see Fig. 2.9) 

uni t  vector 01p a characteristic surface normal t o  the 
bicharacteristic direction 

r-component of N defined by egn. (2.18) 

fi-component of N defined by aqn. (2.19) 

2 

2 
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a n 

r n 

npl 
nZ 

P 

Pr 

p@ 

PZ 

Qi 

q i  
R 

r 

S 

S 

T 

*i 

A 
t 

i 
z-component of N defined by eqn. (2.20) 

unit  vector normal t o  the control surface 

r-component of defined by eqn. (2.2) 

$-component of "n defined by eqn. (2.2) 

z-compent of $ defined by eqn. (2.2) 

pres sure 

Eudbient pressure 

uni t  vector normal t o  the nozzle wall at the  ex i t  

r-component of $defined by eqn. (4.4) 

&component of $ defined by eqn. (4.5) 

= z-component of $ defined by eqn. (4.6) 

= ( i  = 1-9) coefficients i n  eqn. (5.10) 

= (i = 1-5) coefficients i n  eqn. (5.9) 

= gas constant 

= ( i  =I 1-3) derivatives defined by eqn. (2.72) - (2.74) 

= coordinate of (r ,  pl, z)-cylindrical coordinates 

= area of projected control surface on (r ,  @)-plane 

= entropy 

= temperature 

= derivatives defined by eqns. (2.72) - (2.74) 

= axial  thrust 

= unit vector in tangent plane t o  nozzle boundary 

= rcamponent of t defined by eqn. (4.7) 

= $-component of t defined by eqn. (4.8) 

= z-component of t defined by eqn. (4.9) 

A 

-L 

A 



ui 

V 

V 
2 

‘r 

vz 

v1 

vt 

v P 

W i 

x x  
2’ 3 

X 

Y 

z 

z 

(i = 1-9) coefficients i n  eqn. (5.11) 

magnitude of the  velocity 

velocity vector 

r-component of 7 as defined by aqn. (2.1) 

jkxm@cment of ? as defined by eqn. (2.1) 

z-component of ? as defined by eqn. (2.1) 

p-component of ?; as defined by eqn. (4.10) 

1-component of V as defined by eqn. (4.11) 

t-component of 7 as defined by eqn. (4.12) 

independent variable 

function defined by eqns. (3.9) and (3.10) 

coordinate i n  rectaqgiLar (x, y, z)-coordinates 

coordinate in rectangular (x, yI z)-cmrdinates 

coordinate in (r ,  j6, z)-cylindrical coordinate system 

unit  vector in z-direction 

A 

Greek Symbols 

a = angle par t ia l ly  defining the direction of the  uni t  normal 
t o  the control surface, see Fig. 2.3 

= angle par t ia l ly  defining the direction of the unit  normal 
t o  the control surface, s?e Pig. 2.3 P 

r = boundary of a domain of integration 

r = ratio of specific heat cagecities 

a = incremental change 

6 = variational operator 

6 = angle relating bicharacteristic direction t o  (r, #, z) -  
cylindrical coorainates, see Fig. 2.7 

E = variational parameter 
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Subscripts 

a =a 

e 5 

- i - 
k - - 
0 = 

S P= 

angle par t ia l ly  def h i n g  the direction of the  velocity 
vector, see Fig. 2.2 

Lagrange multiplier 

Lagrange multiplier 

Wch angle defined by eqn. (2.10) 

angle defined by eqn. (2.37) 

r a t i o  of the circumference t o  the diameter of a c i r c l e  

density 

angular coordinate a9 ( r ,  jb, 2)-cylindrical coordinates 

angle par t ia l ly  defining the direction of the velocity 
vector, see F i g ,  2.2 

vor t ic i ty  vector defined by eqn. (2.13) 

rcomponent of d defined by eqn. (2.14) 

$-component of c3 defined by eqn. (2.15) 

z-component of Cd defined by eqn. (2.16) 

2 

2 

A 

anibient conditions 

conditions at  the ex i t  plane 

variable index 

conditions in the  kernel or  on the boundary of the kernel 

t o t a l  conditions of thermodynamic variables 

constant entropy 
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Operators 

a = partial derivative operator 

d = di f fe ren t ia l  operator 

8 = variational operator 

= part lal  derivative on the control surface in the direction 
)N which holds N c o n s t a t  

u) 
(dN L which holds L constant 

= partial derivative on the control surface in the direction 

= partial derivative In ( r ,  @)-plane in the  direction which 
(dr 16 holds 6 constant (s) = partial derivative in (r, $)-plane in the direction which 

r holds r constant 

V =  el operator of vector c ~ l c ~ l u s  

i7 = vector 
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APPENDIX B 

DERIVATION OF VARIATIOPI’AL RELATIONSHIPS 

The object of t h i s  Appendix is t o  derive the variational relation- 

ships which are needed f o r  the solution of the optimum thrust  nozzle 

design problem. 

calculus is assumed. 

An understanding of the  basic concepts of variational 

Consider a function G defined over t h e  domain A in the  (r, #)-plane 

i l lustrated i n  Fig. B-1. 

independent variables r and 6, the  p dependent variables wi(i=1,2,*..p), 

and the partial derivatives of wi denoted as Ri and Ti where 

G may be an expl ic i t  function of the two 

To treat the  variational problem,the variational parameter E i s  introduced. 

The dependent variables of the system a re  considered as f’unctions of E 

so t h a t  

In accordance with standard notation the  first variation of wi(E) is 

defined as 
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Y 

FIGURE 6-1 

DOMAIN OF INTEGRATION, A ,  

IN THE ( r t + )  - PLANE 
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Consider now the Integral I defined by the equation 

where the area of integration, A, maybe a function of the variational 

parameter E o  To determine the first variation of I, namely 

requires the application of t w o  w e l l  known concepts from calculus. 

The f irst  is  Liebnitz' rule  f o r  differentiation of an integral  with 

variable limits and the second is  integration by p a r t s  which f o r  an 

area integral is equivalent t o  Stokes' Theorem. These t w o  concepts 

can be stated i n  equation form as follows: 

Liebni tz  1 me2'  - : 
If 

where a and b are differentiable functions of e and both f ( t ,  E )  

and %( t ,  a ) / &  are  continuous in both t and E ,  then 

Stokes' Theorem: Stokes' Theorem in  vector form is21 



where the element dl is along the boundary r 
keeping the area A always on the left. In  terms of polar coordinates 

r and $ and the components of ? in the r and @ directions (denoted as 

Fr and F ), eqn. (B-8) becomes 

in a positive sense, 

55 

03-91 I ’  

as i l lus t ra ted  in Fig. B-1. where 2 is the uni t  outward notmal t o  p 

How eqn. (B-4) can be rewritten t o  include the limits of integration 

so that Liebnitz’ Rule can be applied t o  calculate 61. Thus, 

(B-11 ) 

where the standard summation convention f o r  repeated variable indicies 

i s  employed. For example, the term 

(B-12) 

In  the terms mi and Wi,the order of the variation 6 and the 

paxtial derivative operations can be interchanged as follows: 
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Therefore, the terms involving; 6Ri and mi in  eqn. (B-l l )  can be expanded 

t o  give 

and 

Equations (B-14) and (B-15) a re  substituted into eqn. ( B - l l )  which 

can then be partially integrated using Stokes' Theorem i n  the form of 

eqn. (B-9) where 

where 

is the well-known Ner-Lagrange equation of variational calculus 

Notice that eqn. (B-17) f o r  the variation of I can be separated 

into two parts, namely a $art tha t  a r i ses  f o r  a fixed area A and a part 

that is ascribed t o  the variation of the domain of A. 


